1二次根式:形如a(a0)的式子为二次根式;性质:a(a0)是一个非负数;
a2aa0。
2二次根式的乘除:ababa0,b0;
aaa0,b0。bb3二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。
4海伦-秦九韶公式:S是三角形的面积,Sp(p)(pb)(pc),p为pabc。2第二章一元二次方程
1一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程。
2一元二次方程的解法
配方法:将方程的一边配成完全平方式,然后两边开方;
bb24ac公式法:x2a因式分解法:左边是两个因式的乘积,右边为零。
3一元二次方程在实际问题中的应用
4韦达定理:设x1,x2是方程ax2bxc0的两个根,那么有x1x2,x1x2第三章旋转
1图形的旋转旋转:一个图形绕某一点转动一个角度的图形变换性质:对应点到旋转中心的距离相等;
对应点与旋转中心所连的线段的夹角等于旋转角旋转前后的图形全等。
2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;
中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;
3关于原点对称的点的坐标第四章圆
1圆、圆心、半径、直径、圆弧、弦、半圆的定义
2垂直于弦的直径
圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;
垂直于弦的直径平分弦,并且平方弦所对的两条弧;平分弦的直径垂直弦,并且平分弦所对的两条弧。
3弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所baca对的弦也相等。
4圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。
5点和圆的位置关系点在dr点在圆上d=r点在圆内d相等,这一点和圆心的连线平分两条切线的夹角。
三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。
6圆和圆的位置关系
外离d>R+r外切d=R+r相交R-r第五章概率初步
1概率意义:在大量重复试验中,事件A发生的频率某个常数p附近,则常数p叫做事件A的概率。
2用列举法求概率
一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=mnm稳定在n3用频率去估计概率
我们初三数学备课组在本学期继续认真学习学科新课程标准,将新课改的理念渗透到数学教学中,认真研究教材教法、学生学法,根据本届初三学生的实际情况,较为圆满地完成了毕业班数学教学工作,下面总结一下本学年的工作情况。
(一)、坚持不懈地抓好教学常规管理
要求本组教师抓课堂教学,在课堂上要准确无误地把知识传授给学生;采用灵活多变富用启迪性的教育法;课堂结构在优化上求效益;用条理清楚的语言表达,利用多媒体来辅助教学,激起学生学习兴趣,学生积极活动,师生形成合力,取得最大的教学效果。
抓备课,课前认真分析、研究教材的知识点、重点、难点,把要引导的内容和过程统筹设计,哪怕在上课时所做的设计和实际不一定相吻合老师们也认真设计好,因为这是教学有的放矢的第一步。课上的巡回指导和个别提问虽然会感到劳累,但是,老师们也切实用心地去做。课下的辅导和作业老师们更能悉心指导、积极奉献。能做到在个人备课的基础上,坚持备课组集体研究;在抓好教学环节的基础上,坚持集体备课,相互交流,相互探讨,认真备好每一节课,课组活动确实有效、抓住关键、提纲挈领、启发引导、有助于各位教师设计好每节课,使之在教材处理、教法优选、课堂把握、差生指导、教学美化等方面做得更好。
(二)、关于考试和练习
对于考试,我们认真研究了今年中考的目标和要求,分析了历年来的中考数学试题,从提高教学质量的目的出发,改进考试方式,把握考试尺度,讲究考试效果,不出偏题、怪题,注意代表性,强调覆盖面,以尽量反馈出学生掌握知识的情况,暴露出教学中存在的问题。试题由备课组教师轮流命题,以锻炼各位教师把握重点、难点、关键的能力,考试以后,能及时召开质量分析会,及时诊断,及时反思,及时研究制定调控方案,并在教学中及时解决,从而使数学教学质量的不断提高。
在平常教学中,我们坚持“堂堂清”、“日日清”、“周周清”。“堂堂清”、“日日清”、“周周清”是相互促进、密不可分的一个整体。“堂堂清”是基础,“日日清”是必不可少的一个补救措施,“周周清”是“堂堂清”、“日日清”的保障,有了“周周
清”,才能促进学生努力去“堂堂清”、“日日清”,现在,“三清”已成为我校的一种学习习惯。
(三)、重视抓差,落实“三清”
本学期本着“每一个学生都能学好”、“每一个学生都能合格”的信念,努力营造尊重学生、关心学生、主动为学生服务的育人氛围。深入学生、了解学生、研究学生,帮助每一个学生健康成长,不忽视学生的每一个闪光点,也不放过每一学生的弱点,不让一个学生掉队。在教学中学校普遍采用了“先学后教,当堂训练”的课堂教学结构,所谓“先学”就是让学生自主学习。所谓“后教”,就是指学生合作学习,会的学生教不会的学生,最后教师点拨,从而解决“差生”存在的问题。课堂教师提问、做练习,都由“差生”打头阵,让“差生”的问题在课堂上得到最大限度的暴露,便于师生有针对性的辅导。这样,既让优等生能力强了,又让“差生”基本解决了自己的疑难问题。同时,教师课后辅导的主要对象也是“差生”,交流谈心最多的也是“差生”,由于全组老师的辛勤耕耘,使所有学生都在原有基础上取得了长足的进步。
(四)、根据学校要求,做好日常工作
我们备课组活动每周一次,每次活动定时间、定内容、定中心发言人,并将每次活动精神落到实处。认真对教学常规进行检查,本学期对教师的备课情况进行了细致检查,不定期地检查课堂教学情况、作业批改反馈情况等。另外,我们还认真组织听课活动,包括校内和校外的公开课和讲座,通过学习与探讨,有力的提高了我们的教学水平,同时本学期本备课组每人至少出了一份有质量的中考模拟试题,符合中考大纲要求,提高了教师把握教材、理解教材的能力,学生通过模拟考试,对中考也有了充足的认识和准备。
(五)、有目的、有计划、有步骤地安排实施总复习教学。
一、全面复习基础知识,加强基本技能训练。
这个阶段的复习目的'是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。重视课本,系统复习。现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是教材中题目的引伸、变形或组合,所以第一阶段复习应以课本为主。必须深钻教材,绝不能脱离课本,应把书中的内容进行归纳整理,使之形成体系。课本中的例题、练习和作业要让学生弄懂、会做。
我们初三数学备课组人数比较多,在分配出配套练习题时,由两个老师为一组集体研究某一单元,然后分工写学案,在每一个学案中都有典型例题讲解,随后配以针对性综合练习。授课时先由教师引导学生复习每个学案所针对的知识点,做好板书,指导学生按“板书提要”复习,同时引导学生根据个人具体情况把遗忘了的知识重温一遍,加深记忆,并引导学生弄清概念的内涵和外延,掌握法则、公式、定理的推导或证明,然后进行典型例题讲解,教给学生解答的思路和方法,并及时进行归纳总结,让学生形成知识体系、规律体系。每做完一张学案,老师们都能认真批改,通过批改发现问题,及时解决问题。共性的问题集中讲,个别问题通过请教别人解决。这样做即能激发学生的学习积极性,又能减少学生做题的盲目性。
二、系统复习,各个击破。
(1)系统整理知识网络,提高复习效率。
在总复习的第二阶段,我们依据基础知识的联系和转化,系统整理,重新组织。指导学生构建数学知识的结构网络,我们在这一阶段的教学按知识块组织复习,可将代数部分分为四个单元:数与式;方程与不等式;函数;统计初步等;将几何部分分为六个单元:线、角、平行线;三角形;四边形;相似;三角函数;圆等,做到既要有目的性、典型性和规律性,又要有启发性、灵活性和综合性,让学生体会方程、全等三角形和相似形、圆、函数等知识之间的纵横联系。
(2)、归纳数学思想,总结数学方法。
中考数学试题除了着重考查学生的基础知识外,还十分重视对数学方法的考查,如配方法、换元法、待定系数法、判别式法、因式分解法等等操作性较强的数学方法。我们指导学生熟练掌握每一种方法的实质、解题步骤和它所适用的题型,灵活运用常见的添辅助线的主要方法。其次我们还引导学生重视对数学思想的理解及运用,如函数思想、方程思想、数形结合的思想、分类讨论思想、化归思想、运动思想等。
(3)、加强探索性试题的研究,培养解决实际问题的能力。
在新课程标准的要求下,近几年的中考试卷中增加了探索性问题,学生必须通过观察、比较、分析、综合、猜想等系列活动,运用已有的数学知识与数学方法,经过推理与计算,才能得出正确的结论。另外还有与学生生活背景相关的应用题,学生要能够从具体问题中建立数学模型,运用数学知识解决实际问题。为此,我们教师把近几年的相关中考试题分类整理,集中研究,抓住本质,帮助学生掌握解题技能,形成了一定能力。
三、加强心理和智力的综合训练,提高考试信心。
这是整个复习过程中第三阶段,是不可缺少的一环。在这一阶段我们不是盲目地强化训练和大运动量的练习,而要根据实际情况有选择地进行套题训练,通过练、评、反思,查缺补漏,提高学生解题技能。针对我省今年新的中考要求各类题型和试题结构,进行全真模拟训练,让学生稳定心态,增加信心,特别强化运算的快和准;重视解题过程教学,强调规范、简洁、严谨解题;善于放弃和攻坚,保证会做之题不失分,能够做一步就毫不犹豫的攻坚;过难之题确实不会做,学会放弃。这种训练,使得学生水准大有长进,信心十足,相信他们在中考中必能获胜。
四、竞赛和中考成绩斐然
我们辅导、组织初三学生参加的本学期全国“《数学周报》杯”数学竞赛中,一等奖获奖人数仅次于海南实验中学,在全省排名第二,受到了省市教研室领导、学校领导、各校同行的一致好评,为学校争光添彩;在20xx年琼海市五科联赛中,数学科全校得A人数将近100人左右,学校有91名学生进入全市100名;在20xx年海南省中考中,数学科全校得A人数229人,占琼海市数学科得A人数的59.2%。
五、科组举办和参加的活动
在学校领导的支持下,我组本学期成功组织了几次全市初三数学教研活动,并参加了在昌茂花园学校举办的全省初三数学复习研讨会;参加了在海南鸿运大酒店举行的全校初三中考备考会议,参加了在海南省侨中举办的教学研讨会,通过学习和研讨开了眼界,提高了认识,增长了才干,为我们数学组中考备考提供了方向。
定义
只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程(quadratice quation of one variable或asingle—variable quadratice quation)。
一元二次方程有三个特点:
(1)含有一个未知数;
(2)且未知数的最高次数是2;
(3)是整式方程。要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。如果能整理为ax2+bx+c=0(a0)的形式,则这个方程就为一元二次方程。里面要有等号,且分母里不含未知数。
补充说明
3、方程的两根与方程中各数有如下关系:X1+X2=—b/a,X1X2=c/a(也称韦达定理)。
4、方程两根为x1,x2时,方程为:x2—(x1+x2)X+x1x2=0(根据韦达定理逆推而得)。
5、在系数a0的情况下,b2—4ac0时有2个不相等的实数根,b2—4ac=0时有两个相等的实数根,b2—4ac0时无实数根。(在复数范围内有两个复数根)。
一般式
ax2+bx+c=0(a、b、c是实数,a0)
例如:x2+2x+1=0
配方式
a(x+b/2a)2=(b2—4ac)/4a
两根式(交点式)
a(x—x1)(x—x2)=0
第21章二次根式
1、二次根式:一般地,式子叫做二次根式。
注意:
(1)若这个条件不成立,则不是二次根式;
(2)是一个重要的非负数,即; ≥0。
2、重要公式:
3、积的算术平方根:
积的算术平方根等于积中各因式的算术平方根的积;
4、二次根式的乘法法则:。
5、二次根式比较大小的方法:
(1)利用近似值比大小;
(2)把二次根式的系数移入二次根号内,然后比大小;
(3)分别平方,然后比大小。
6、商的算术平方根:,
商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
7、二次根式的除法法则:
分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。
8、最简二次根式:
(1)满足下列两个条件的二次根式,叫做最简二次根式,
①被开方数的因数是整数,因式是整式,
②被开方数中不含能开的尽的因数或因式;
(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;
(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;
(4)二次根式计算的最后结果必须化为最简二次根式。
9、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。
10、二次根式的混合运算:
(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;
(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。
第22章一元二次方程
1、一元二次方程的一般形式:
a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。
2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。
3。一元二次方程根的判别式:当ax2+bx+c=0
(a≠0)时,Δ=b2—4ac叫一元二次方程根的判别式。请注意以下等价命题:
Δ>0 有两个不等的实根;
Δ=0 有两个相等的实根;Δ<0 无实根;
4。平均增长率问题————————应用题的类型题之一(设增长率为x):
(1)第一年为a ,第二年为a(1+x) ,第三年为a(1+x)2。
(2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和。
第23章旋转
1、概念:
把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。
旋转三要素:旋转中心、旋转方面、旋转角
2、旋转的性质:
(1)旋转前后的两个图形是全等形;
(2)两个对应点到旋转中心的距离相等
(3)两个对应点与旋转中心的连线段的夹角等于旋转角
3、中心对称:
把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。
这两个图形中的对应点叫做关于中心的对称点。
4、中心对称的性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。
(2)关于中心对称的两个图形是全等图形。
5、中心对称图形:
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
1.数的分类及概念数系表:
说明:分类的原则:1)相称(不重、不漏)2)有标准
2.非负数:正实数与零的统称。(表为:x0)
性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:
①定义及表示法
②性质:A.a1/a(a1);B.1/a中,aC.0
4.相反数:
①定义及表示法
②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:
①定义(三要素)
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
7.绝对值:
①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│0,符号││是非负数的标志;
③数a的绝对值只有一个;
④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。
因篇幅问题不能全部显示,请点此查看更多更全内容