您好,欢迎来到好走旅游网。
搜索
您的当前位置:首页高等数学积分公式大全

高等数学积分公式大全

来源:好走旅游网
常 用 积 分 公 式

(一)含有axb的积分(a1.

0)

dx1=axbalnaxbC

(axb)dx=

2.

1(axb)1C(1)

a(1)3.

x1=dxaxba2(axbblnaxb)C

x211dx=3(axb)22b(axb)b2lnaxbC 4.a2axb5.

1axbdx=x(axb)blnxC

6.

1aaxbdxlnC =22bxbxx(axb)7.

x1bdx=(lnaxb)C (axb)2a2axbx21b2dx=3(axb2blnaxb)C 8.(axb)2aaxb9.

11axbdxlnC =22b(axb)bxx(axb)(二)含有axb的积分

2(axb)3C 3a2311.xaxbdx=(3ax2b)(axb)C 215a2212.xaxbdx=(15a2x212abx8b2)(axb)3C 3105a10.

axbdx=13.

x2dx=2(ax2b)axbC

3aaxbx22222dx=(3ax4abx8b)axbC 315aaxb14.

dx15.=xaxb16.

1lnbaxbbC(b0)axbb

2axbarctanC(b0)bbx2dxaxbadx= bx2bxaxbaxb17.

axbdxdx=2axbb xxaxbaxbaxbadxdx= 2xx2xaxb218.

(三)含有x19.

a2的积分

dx1x=arctanC x2a2aadxx2n3dx=(x2a2)n2(n1)a2(x2a2)n12(n1)a2(x2a2)n1 1xadxln=x2a22axaC

220.

21.

(四)含有axb(a0)的积分

1arctandxab22.2=axb1ln2ab23.

axCb(b0)

axbC(b0)axbx12=dxlnaxbC ax2b2ax2xbdxdx=224.2

axbaaaxbdx1x2lnC 25.=

x(ax2b)2bax2b26.

dx1adx=x2(ax2b)bxbax2b

27.dxaax2b1x3(ax2b)=2b2lnx22bx2C

28.

dxx(ax2b)2=2b(ax2b)1dx2bax2b

(五)含有ax2bxc(a0)的积分

22axdx4acb2arctanb4acb2C29.ax2bxc=12axbb24acb24acln2axbb24acC30.

x12bdxax2bxcdx=2alnaxbxc2aax2bxc(六)含有x2a2(a0)的积分

31.

dx=arshxx2a2aC1=ln(xx2a2)C 32.

dxx(x2a2)3=a2x2a2C

33.

xx2a2dx=x2a2C

34.

x(x2a2)3dx=1x2a2C

35.

x2xx2a2dx=2x2a2a22ln(xx2a2)C 236.

x(x2a2)3dx=xx2a2ln(xx2a2)C

.dx1x2a237axx2a2=alnxC 38.

dx2=x2a2x2ax2a2xC 39.

x2a2dx=xx2aa22ln(xx2a222)C (b24ac)(b24ac)

x34223222222(xa)dx=(2x5a)xaaln(xxa)C 8812241.xxadx=(x2a2)3C

340.42.x2xa42222xadx=(2xa)xaln(xx2a2)C

882243.

x2a2x2a2a22dx=xaalnC xxx2a2x2a222dxln(xxa)C =2xx44.

(七)含有x2a2(a0)的积分

45.

dxx2a2xxarchC1=lnxx2a2C xa=46.

dx(xa)xx2a2223xa2xa22C

47.

dx=x2a2C

48.

x(xa)223dx=1xa22C

49.

xx2a22xalnxx2a2C dx=22x2a2x250.

x2(x2a2)3dxx2a2dx=xx2a2lnxx2a2C

51.=1aarccosC ax52.

x2x2a2C =222axxadx53.

x2a22xalnxx2a2C xadx=222254.

x3(x2a2)3dx=(2x25a2)x2a2a4lnxx2a2C

8855.xxadx=221(x2a2)3C 356.x2xa42222xadx=(2xa)xalnxx2a2C

882257.

ax2a2dx=x2a2aarccosC

xxx2a2x2a222dxlnxxaC =2xx58.

(八)含有a2x2(a0)的积分

=arcsin59.

dxa2x2xC axC

60.

dx(ax)xa2x2223=a2ax2261.

dx=a2x2C

62.

x(ax)223dx=1ax22C

63.

x2a2x2axarcsinC dx=22aa2x2x264.

x2(a2x2)3dxdx=xa2x2arcsinxC a1aa2x2C 65.=ln22axxax66.

x2a2x2C =222axaxdx67.

x2a2x2axarcsinC axdx=22a22x34x2232222(ax)dx(5a2x)axaarcsinC =88a122(a2x2)3C 69.xaxdx=368.

70.x2xa4x2222axdx=(2xa)axarcsinC

88a2271.

a2x2aa2x222dx=axalnC xxa2x2a2x2xdxarcsinC =x2xa72.

(九)含有ax2bxc(a0)的积分

dx=73.

ax2bxc1ln2axb2aax2bxcC a74.

ax2bxcdx=xax2bxcdxcbxax222axbax2bxc 4a1ax2bxc a12axbarcsinC

2ab4ac75.

dx=76.

=77.

2axbb24ac2axb2cbxaxdx=cbxaxarcsinC

324a8ab4acxcbxax278.

dx=1b2axbcbxax2arcsinC

32a2ab4ac(十)含有xa或(xa)(bx)的积分 xbxb)C

79.

xaxadx=(xb)(ba)ln(xaxbxb80.

xaxaxadx=(xb)(ba)arcsinC bxbxbx81.

xadxC=2arcsinbx(xa)(bx)(ab)

82.

2xab(ba)2xa(xa)(bx)arcsinC (xa)(bx)dx=44bx(十一)含有三角函数的积分

83.84.85.86.

sinxdx=cosxC cosxdx=sinxC tanxdx=lncosxC cotxdx=lnsinxC

xlntan()C=lnsecxtanxC =secxdx4287.

88.

cscxdx=lntansec2xC=lncscxcotxC 289.90.91.92.93.

xdx=tanxC

2cscxdx=cotxC

secxtanxdx=secxC cscxcotxdx=cscxC

2sinxdx=

x1sin2xC 24x1294.cosxdx=sin2xC

241n1n1nn295.sinxdx=sinxcosxsinxdx nn1n1nn1n296.cosxdx=cosxsinxcosxdx

nndx1cosxn2dx97.= sinnxn1sinn1xn1sinn2xdx1sinxn2dx98.= nn1n2cosxn1cosxn1cosx1m1mnm2n99.cosxsinxdx=cosm1xsinn1xcosxsinxdx

mnmn1n1cosm1xsinn1xcosmxsinn2xdx =mnmn100.

sinaxcosbxdx=sinaxsinbxdx=11cos(ab)xcos(ab)xC

2(ab)2(ab)11sin(ab)xsin(ab)xC

2(ab)2(ab)101.

102.

cosaxcosbxdx=

11sin(ab)xsin(ab)xC

2(ab)2(ab)103.

2dx=absinxa2b2arctanatanxb2C22ab(a2b2)

x22bbadx12104.=lnC22xabsinx22baatanbba2atan105.

(a2b2)

2ababxdxarctan(tan)C=abcosxababab2(a2b2)

xdx1ab2106.=lnabcosxabbaxtan2tan107.

abbaCabba(a2b2)

dx1b=arctan(tanx)C a2cos2xb2sin2xaba1btanxadxln=a2cos2xb2sin2x2abbtanxaC

108.

11sinaxxcosaxC 2aa12222110.xsinaxdx=xcosax2xsinax3cosaxC

aaa11111.xcosaxdx=2cosaxxsinaxC

aa12222112.xcosaxdx=xsinax2xcosax3sinaxC

aaa(十二)含有反三角函数的积分(其中a0)

xx22113.arcsindx=xarcsinaxC

aa109.

xsinaxdx=

x2a2xx2x)arcsinax2C 114.xarcsindx=(24a4ax3x1xarcsin(x22a2)a2x2C 115.xarcsindx=3a9a2116.

xx22arccosdxxarccosaxC =aax2a2xx2x)arccosax2C 117.xarccosdx=(24a4ax3x1xarccos(x22a2)a2x2C 118.xarccosdx=3a9a2xxa22=arctandxxarctanln(ax)C aa2x12xa2120.xarctandx=(ax)arctanxC

a2a2119.

x3xa2a3xarctanxln(a2x2)C 121.xarctandx=3a66a2(十三)含有指数函数的积分

1xaC lna1axax123.edx=eC

a1axax124.xedx=2(ax1)eC

a1naxnn1axnax125.xedx=xexedx

aa122.

xadx=

126.

xxadx=

xx1xaaC 2lna(lna)1nxnn1xxaxadx lnalna1axax128.esinbxdx=2e(asinbxbcosbx)C 2ab1ax129.ecosbxdx=2eax(bsinbxacosbx)C 2ab1axnaxn1130.esinbxdx=2esinbx(asinbxnbcosbx) 22abn1axnaxn1131.ecosbxdx=2ecosbx(acosbxnbsinbx) 22abn127.

nxxadx=

(十四)含有对数函数的积分 132.133.

lnxdx=xlnxxC

dxxlnx=lnlnxC

1n11nx(lnx)C 134.xlnxdx=

n1n1135.

nnx(lnx)n(lnx)dx (lnx)dx=n1136.

mnx(lnx)dx=1nmn1xm1(lnx)nx(lnx)dx m1m1(十五)含有双曲函数的积分 137.138.139.140.

shxdx=chxC chxdx=shxC thxdx=lnchxC

2shxdx=x1sh2xC 24x12141.chxdx=sh2xC

24(十六)定积分 142.143.

cosnxdx=sinnxdx=0

cosmxsinnxdx=0

144.

0,mncosmxcosnxdx= ,mn0,mn145.sinmxsinnxdx=

,mn146.

0sinmxsinnxdx=2000,mncosmxcosnxdx=

,mn2147. In= In=

sinxdx=cosnxdx

n20n1In2 nn1n3 InLnn2n1n3InLnn242 (n为大于1的正奇数),I1=1 5331(n为正偶数),I0= 4222

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- haog.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务