UlfvonBarth,1NilsErikDahlen,2RobertvanLeeuwen,2andGianlucaStefanucci1
1
arXiv:cond-mat/0507604v2 [cond-mat.stat-mech] 17 Dec 2005SolidStateTheory,InstituteofPhysics,LundUniversity,S¨olvegatan14A,S-22362Lund,Sweden
2
RijkuniversiteitGroningen,TheoreticalChemistry,MaterialsScienceCenter,
9747AG,Nijenborgh4,Groningen,TheNetherlands
(Dated:February2,2008)Inthepresentworkweproposeatheoryforobtainingsuccessivelybetterapproximationstothelinearresponsefunctionsoftime-dependentdensityorcurrent-densityfunctionaltheory.Thenewtechniqueisbasedonthevariationalapproachtomany-bodyperturbationtheory(MBPT)asdevelopedduringthesixtiesandlaterexpandedbyusinthemidnineties.Duetothisfeaturetheresultingresponsefunctionsobeyalargenumberofconservationlawssuchasparticleandmomentumconservationandsumrules.ThequalityoftheobtainedresultsisgovernedbythephysicalprocessesbuiltinthroughMBPTbutalsobythechoiceofvariationalexpressions.Weherepresentseveralconservingresponsefunctionsofdifferentsophisticationtobeusedinthecalculationoftheopticalresponseofsolidsandnano-scalesystems.
PACSnumbers:
I.INTRODUCTION
Opticalspectraconstituteimportanttoolsforgain-inginformationontheelectronicstructureofsolids,molecules,andnano-systems.Inmanysystemstheparticle-holeinteractionleadstoastrongexcitonicdis-tortionoftheopticalspectrum-particularlyinnano-scaleobjects.Thetheoreticaldescriptionofsuchspectraisrelativelysophisticatedandverycostlyfromacom-putationalpointofview.Sometimeago,itwasreal-izedthatthesespectraarealsowithinreachusingtime-dependent(TD)density-functionaltheory(DFT)-butwithmuchlesscomputationaleffort.FromtheRunge-Grosstheorem1ofTDDFTweknowhowtoconstructtheexactdensityresponsefunctionofanyelectronicsystemintermsofanexchange-correlationkerneldescribingtheparticle-holeinteractions.Andfromrecentworkbysev-eralresearchers2,3wehavearathergoodideaaboutthepropertiesofthiskernelifitistoreproducetheratherac-curateresultsobtainedfromsolvingtheBethe-Salpeterequationofmany-bodyperturbationtheory(MBPT).Thekernel,usuallynamedfxc,hasbeencalculatedintheexchange-onlyapproximationofTDDFTbyseveralpeopleinthepast,seeforinstanceRefs.4,5.Morere-cently,thekernelfxchasbeencalculatedinthesameapproximationbyPetersilka,Gossmann,andGross6fortheheliumatom,byKurthandvonBarthfortheden-sityresponseofthehomogeneouselectrongas,7andbyKimandG¨orling8inthecaseofbulksilicon.Inthecasesofatomicheliumandthehomogeneouselectrongastheresultingresponsefunctionrepresentedasubstantialim-provementonthatoftheRandomPhaseApproximation(RPA).Theexcitationenergiesofheliumweremuchim-provedandthetotalenergiesobtainedfromtheresponsefunctionweremuchsuperiortothoseobtainedfromtheRPAresponsefunctioninbothheliumandthehomoge-neouselectrongas.Unfortunately,thisabinitioapproachdidnotworkverywellinbulksiliconunlessoneratherarbitrarilyintroducessomekindofstaticscreeningofthe
particle-holeinteraction.
Inactualfact,withinTDDFT,nosystematicandre-alisticroutetowardsuccessivelybetterapproximationshas,sofar,beenavailable.Inthepresentworkwehaveconstructedsuchaschemebasedonthevariationalap-proachtomany-bodytheorydevelopedinRef.11.Intermsoftheone-electronGreenfunctionofMBPT,thesefunctionalsgivestationaryexpressionsforthetotalac-tionofthesystemathand-orthetotalenergyinthecaseoftimeindependentproblems.Fromastationaryactionitisratherstraight-forwardtoconstructthetimedepen-dentdensityresponsefunction.BuildingthefunctionalsfromtheΦ-derivabletheoryofBaymandKadanoff,12,13alwaysresultsinresponsefunctionswhichobeyessentialphysicalconstraintslikeparticle,momentumorenergyconservation.
ThesimpleideaofthepresentworkistorestrictthevariationalfreedomofthefunctionalstothedomainofGreenfunctionswhicharenon-interactingandgivenbyalocalone-electronpotential-andvector-potentialincaseofcurrent-DFT.AccordingtotheRunge-Grossthe-oremthisrestrictionimmediatelyresultsinadensity-functionaltheorythequalityofwhichisdeterminedbythesophisticationwhichisbuildintothechoiceofΦderivableapproximationfortheactionfunctional.Thus,toeveryconservingschemewithinMBPTthereisacor-respondinglevelofapproximationwithinTDDFT.ThelatterisdeterminedvariationallyandthereisnolongeraneedforanadhocproceduretoequatecorrespondingquantitiesbetweenTDDFTandMBPT.Apotentiallyin-terestingconsequenceofthetheoryproposedhere,isthattheoftendiscussedlinearizedSham-Schl¨uterequation14fortheexchange-correlationpotentialisnothingbutthestationaryconditionfortheactionfunctional.Inthepar-ticularversionofthevariationalfunctionalsdevelopedinRef.11andnamedΨderivabletheories,alsothescreenedCoulombinteractionbecomesanindependentvariableatonesdisposal.ThisleadstoapproximationswithinTDDFTwhicharepotentiallyasaccurateasthose
ofmoreelaborateschemeswithinMBPTbutwhicharecomparativelyeasiertoimplement-especiallyinnano-systemsandcomplexsolids.
II.
VARIATIONALAPPROACHTOTDDFT
Letusconsiderasystemofinteractingfermionsex-posedtoanexternal,possiblytime-dependentfieldw(rt).Thefullmany-bodyHamiltonianreads
H
ˆ=Tˆ+Uˆ+Wˆ,(1)
where
Tˆ=−12
d3rd3r′ψ†(r)ψ†(r′)v(r,r′)ψ(r′)ψ(r),
istheinteractionoperator(v(r,r′)=1/|r−r′|).The
couplingtotheexternalfieldisgivenby
Wˆ=
d3rw(rt)nˆ(r),wherenˆ(r)=ψ†(r)ψ(r)isthedensityoperator.The
GreenfunctionGobeysDyson’sequation
G=GH+GHΣG
whereGHistheHartreeGreenfunctionandΣistheexchange-correlationpartoftheelectronicself-energy.Diagrammaticperturbationtheoryprovidesatoolforgeneratingapproximateself-energiesand,inturn,ap-proximateGreenfunctions.Exceptforphysicalintu-ition,thediagrammatictechniquesrelysolelyonthevalidityofWick’stheorem.15,16Thus,atypicalcontri-butiontotheself-energyisrepresentedbyadiagramcontainingnon-interactingpropagatorsandinteractionlines.However,anyapproximationwhichcontainsonlyafinitenumberofthesediagramsviolatesmanyconser-vationlaws.Conservingapproximationsrequireaproperchoiceofaninfinitesetofdiagrams.TheconservingapproachbyBaym12wasbasedonsuchchoices.Alsothevariational11schemebyAlmbladh,vonBarthandvanLeeuwen(ABL)wasdesignedwiththesameobjectiveinmind.TheformerapproachisreferredtoasaΦ-derivableschemebecauseitscentralquantityisauniver-salfunctional,calledΦ,oftheone-electronGreenfunc-tionGandthebareCoulombpotentialv.Itiscon-structedsuchthatitsfunctionalderivativewithrespecttoGgivestheexchange-correlationpartoftheelectronicself-energyΣwhereasthefunctionalderivativewithre-specttotheCoulombinteractionvessentiallygivesthereduciblepolarizabilityχofthesystem,
Σ(1,2)=
δΦ
δv(2,1)
.
(2)
2
(Hereandinthefollowingweusetheshort-handnota-tion1=(r1,t1),2=(r2,t2)andsoon).Notice,how-ever,thatthereisnoreferencetoanactualsystemintheΦfunctional.ItacquiresameaningonlywhenitisevaluatedataGreenfunctionofanactualsystem.IntheapproachofABL,thecentralquantityisinsteadthefunc-tionalΨhavingtheGreenfunctionGandthescreenedCoulombinteractionWasindependentvariables.Itisconstructedsoastogivetheself-energywhenitisdif-ferentiatedwithrespecttoGandtheirreduciblepolar-izabilltyPwhenfunctionallydifferentiatedwithrespecttoW.Again,thereisnoreferencetotheactualsys-temcontainedinthefunctionalΨ.ByaddingfunctionalpiecestotheΦortheΨfunctionalrespectively,pieceswhichdocontainclearconnectionstothesystemunderstudy(like,e.g.,theexternallyappliedpotentialw),oneconstructsfunctionalsforthetotalenergy-ortheac-tioninthecaseoftimedependentproblems-which,asfunctionalsofG,havetheirstationarypointattheGreenfunctionGwhichisthesolutiontoDyson’sequation.InthecaseoftheΨ-basedfunctionalstheyarealsostation-arywhenthescreenedinteractionWobeysthesocalledreducedBethe-Salpeterequationtobediscussedlater.Thefirstvariationalfunctional17ofthiskindwascon-structedbyLuttingerandWard(LW).ItisaΦfunc-tionalandithastheappearance
iYLW[G]=Φ[G]−TrΣG+ln(Σ−G−H
1
)−
−iUH[G].(3)
InEq.(3),thefunctionalUH[G]=i
δD
=0,
D=0
oneobtainsanewvariationalfunctionalhavingthesamestationarypointandthesamevalueatthestationarypoint.Itmight,however,bedesignedtogiveasecondderivativewhichalsovanishesatthestationarypoint-
somethingthatwouldbeofutmostpracticalvalue.Suchpossibilitiescouldopenupawholenewfieldofresearch.ChoosingtoaddF[D]totheLWfunctional,where
F[D]=Tr{−D+ln(D+1)}
(5)
obviouslyhasthedesiredproperties,leadstothefunc-tional
iYK[G]=Φ[G]−TrGG−H
1−1+ln(−G−1
)−iUH[G].ThisfunctionalwasfirstwrittendownbyKlein,21andcouldthusbecalledtheKleinfunctionalinordertodistinguishitfromtheLWfunctionalabove.Unfortu-nately,thisfunctionalislessstable(largesecondderiva-tive)atthe22,23,24,25stationarypointascomparedtotheLWfunctional.SincetheconstructionofresponsefunctionsforTDDFTfromthevariationalfunctionalsinvolveevaluatingthematnon-interactingKohn-ShamGreenfunctions,onemightexpectalessstablefunctionaltogiverisetoinferiorresponsefunctions.Andthisissomethingwhichhastobethoroughlyinvestigated.ButitisclearthattheKleinfunctionalismucheasiertoevaluateandmanipulateascomparedto,e.g.,theLWfunctional.
AlltheΦfunctionalsleadtoaDysonequationwhichhastobesolvedself-consistentlyforG.Thisis,ingen-eral,averydemandingtaskbecauseofthecomplicatedsatellitestructureinherenttoanyinteractingGreenfunc-tion.Thisseverecomplicationis,however,circumventedbyswitchingtoTDDFT.
OurapproximationswithinTDDFTarejustspecialcasesofthevariationalfunctionalsinwhichwere-strictthevariationaldomainoftheGreenfunctiontobeallGreenfunctionsobtainablefromaone-electronSchr¨odingerequationwithalocalmultiplicativepoten-tial-orvectorpotentialinthecaseofcurrent-DFT.Weremarkthatthisrestrictiononthevariationalfreedomrenders1,20,26allthevariationalfunctionalsdensityfunctionals.Givenadensitythereisalocalpoten-tialwhichinanon-interactingsystemproducesthatden-sity.Thispotentialproducesthenon-interactingGreenfunctionwhichweusetoevaluateourfunctionals.Thus,thevariationalapproachnaturallygeneratesdifferentap-proximationswithinDFTforstaticproblemsandwithinTDDFTfortime-dependentproblemsorfortheresponsefunctionsofstationaryproblems.Asweshallsee,theexchange-correlationquantitiesdependonthechoiceoftheactionfunctionalsothattoeveryapproximateBaymfunctionalΦcorresponddifferentapproximateexchange-correlationpotentialsandkernels.
Below,wediscussTDDFTandTDcurrent-DFT(TD-CDFT)approximationsintheframeworkoftheKleinfunctionalandoftheLWfunctional.WealsogeneralizethetheorytoΨfunctionalsandgivesomeexamplesofapproximationswhichwebelievetobequitefeasibletoapplytorealisticsystemstakingdueaccountofthefullelectronicstructureofone-bodyorigin.
3
III.
TDDFTFROMTHEKLEINFUNCTIONAL
LetGsbetheGreenfunctionofanon-interactingsys-temofelectronsexposedtotheexternal,possiblytime-dependent,potentialV(rt).TheKleinfunctionalevalu-atedatGscanthenberegardedasafunctionalofV:
iYK[V]=Φ[Gs]−TrGsG−H1−1+ln(−G−s1
)−iUH[Gs].WecouldnowdirectlyusethestationarypropertyoftheKleinfunctionalwithrespecttovariationsintheun-knownone-bodypotentialVinordertoobtainanequa-tionforthatpotential.Becauseofthesimplicityofanon-interactingGreenfunction,however,thefunctionalYKcanfirstbemanipulatedtoacquireaphysicallyappeal-ingform.Thiscan,mosteasily,beseeninthestaticcaseelaboratedbelow.Thefollowingequationsarestillvalidinthecaseoftimedependentproblemsand/orproblemsatelevatedtemperatures.This,however,requiressomereinterpretationsofstandardDFTquantitieslike,e.g.,TsorUH,whichthenbecomefunctionalsontheKeldyshcontour.27Fornon-interactingGreenfunctionstheloga-rithmoftheinverseofGsisjustthesumoftheoccupied
eigenvaluescontainedinGs.17AndthetraceofGsG−theintegraloftheparticledensitymultipliedH1
−1isjustbythepotentialsV−w−VH.Expressing2theeigenvaluesoftheone-electronHamiltonian−∇/2+Vasexpectationvaluesthenleadsto,
YK[V]=−iΦ[Gs]+Ts[n]+
wn+UH.(6)Here,thequantityTs[n]isthewellknownfunctionalfor
thekineticenergyofnon-interactingelectronsinthepo-tentialV-whichproducesthedensityn.ComparingnowwithstandardDFTweseethattheΦ-functionalpre-ciselyplaystheroleoftheexchange-correlationenergy.ThismeansthatwemayreusestandardDFTresultsandrealizethattheKleinfunctionalisstationarywhen
V=w+VH−i
δΦ
δn
=−i
δΦ
δV
δV
4wherewehavedefinedageneralizednon-interactingre-sponsefunctionΛaccordingto
A.
Theexchange-onlyapproximationLetusconsider,forinstance,thesimplestapproxima-iΛ(2,3;1)≡
δGs(2,3)
δn(2)
.
ThekernelfxccannowbeobtainedfromonefurthervariationwithrespecttothetotalpotentialV.Thevari-ationofvxcwithrespecttoVcanbeexpressedintermsoftheexchange-correlationkernelfxcas
δvxc(1)
(34)
+
δV(2)
Λ(4,3;1)dΛ(1,3;2)∆(3,4)Gs(4,1)d(34)+
Gs(1,3)∆(3,4)Λ(4,1;2)d(34),
(10)
where
∆(1,2)=Σs(1,2)−δ(1,2)vxc(1).
WhenthepotentialvxchasbeenobtainedfromEq.(9),theright-handsideofEq.(10)isacalculableexpressionforanygivenapproximateΦandnoself-consistencyisrequired.Asanadditionalbonus,alloccurringGreenfunctionsarenon-interactingasopposedtointeractingasonewouldhaveinmostiterativeschemesbasedonMBPT.(Consider,e.g.,theresponsefunctionofthetime-dependentHartree-Fockapproximation.)
tionforΦ,namelytheHartree-Fockapproximation:Φix=δG(2,1)=iv(1,2)Gs(1,2).Inthiscase
δΣx(1,2)fxxcivxc=+ ++= -i Wxivxc++ + FIG.2:Exchange-correlationkernelintheGWapproxima-tionAllGreenfunctionsareKohn-ShamGreenfunctionsandallinteractionsareRPAscreenedinteractions.Thisresponsefunctionforwhichthe”time-dependentGW(TDGW)response”wouldbeadescriptivename,ispresentlytoodifficulttocomputeinrealsystems.Gel-dartandTaylorusedittoinvestigatetheeffectsofthestaticscreeningpropertieson29theelectrongas.28ItwasusedbyLangrethandPerdewinthestaticlongwave-lengthlimitinordertoextractgradient30approximationsforDFT.RichardsonandAshcrofthavepublishedanapproximationtotheTDGWresponseoftheelectrongasbutonlyatimaginaryfrequencies.AnotherapplicationoftheTDGWresponseisduetoLangrethetal.31anddealswithVanderWaalsforces.TheTDGWresponseisgenerallybelievedtobeveryaccuratebutthecompu-tationofthescreenedinteractionisknowntobeabottleneckinGWcalculationsonrealsolids.Unfortunately,theTDGWresponsecontainstwosuchcomplicatedfac-tors(screenedinteractions).C.TDCDFTfromtheKleinFunctionalInTDCDFTthedensitynandthephysicalcurrentdensityjareuniquelyfixedbytheexternalvectorpo-tentialAextandthescalarpotentialw.32,33ThecouplingtotheexternalfieldsisgivenbyJˆ=d3r[Aext(rt)·jp(rt)+w˜(rt)n(rt)],wherew˜=w+A2ext/2andjpistheparamagneticcurrentoperator.AccordingtoourprescriptionwerendertheKleinfunctionalafunctionalofjµ=(n,j)byrestrictingthevariationalfreedomoftheGreenfunctionstobeallthoseGs’swhicharenon-interactingandgivenbyalocalscalarpotentialandavector-potential,Aµ=(V,A).ItisconvenientwhereV˜toconsiderthefour-vectorA˜µ=(V˜,A),=V+A2/2,astheindependentvariablessincethefour-vectordensityjp,µ=(n,jp)istoA˜coupledlinearlyµ.5Asinthecaseofonlydensityvariations,thesimplic-ityofanon-interactingGreenfunctionagainallowstheKleinfunctionaltobewritteninamuchmoreconvenientform.UsingsimilarmanipulationsasinthebeginningofSec.III,wearriveattheexpressionYK=Ts[n,j]+UH+A˜µjp,µ−iΦ,(11)wherewehaveusedthenormalconventiontosumoverrepeatedindices.Here,thefunctionalTsforthenon-interactingkineticenergyalsodependsonthephysicalcurrentdensityjandnotonlyonthedensityn.Asbefore,theΦ-functionalplaystheroleoftheexchange-correlationenergy.WethenrealizethatthefunctionalYKisstationarywhenV˜=w˜+VδΦH+vxcwherevxc=−iδj.(13)Letusnowfocusonthosesystemwithavanishingex-ternalvectorpotential.FollowingthesamestepsasledtoEq.(9),i.e.,thechainrulefordifferentiation,weobtainthe”linearized”Sham-Schl¨uterequationofTDCDFT,34,35Σs(2,3)Λµ(3,2;1)d(23)=χs,µν(1,2)Axc,ν(2)d2.(14)(NoticethatAxc,µ=(vxc,Axc)innormalfour-vectorno-tation.)ThegeneralizedresponsefunctionΛµappearingaboveisdefinedaccordingtoiΛδGo(2,3;1)≡s(2,3)1δA(1)=δA.(17)ν(2)Themany-bodyresponsefunctionχδjµν(1,2)=µ(1)6
wherefxc,µν=δAxc,µ/δjν.InourvariationalschemetheequationforfxcisobtainedfromonefurthervariationofEq.(14)withrespecttotheKohn-ShampotentialAµ.Thecorrespondingresponsefunctionχµνobeysthef-sumruleandWardidentities19sinceunderagaugetransformationthescalarpotentialVandvectorpotentialAchangeasintheexactCDFT,namelyV→V+df/dtandA→A+∇f.Inordertoprovethispropertywechangetheexternalfieldsaccordingtow→w+df/dt,Aext→Aext+∇fandweaskthequestionhowthescalarpotentialVandvectorpotentialAchangeatthestationarypoint.FromEqs.(12-13),itisstraightforwardtorealizethatV→V+df/dtandA→A+∇fprovidedtheexchange-correlationpotentialschangeaccordingtovxc→vxc+Axc·∇fandAxc→Axc.TakingintoaccountthatunderthisgaugetransformationGs(1,2)→e−if(1)Gs(1,2)eif(2),itisamatterofverysimplealgebratoshowthatthelinearized
SSequation(14)isgaugeinvariantforanyΦ-derivableself-energy.
D.TheEXOwithinTDCDFT
Letusconsider,forinstance,theexchange-onlyap-proximationforthehomogeneouselectrongas.Extract-ingthetime-orderedcomponentofEq.(18)andtakingadvantageofthetranslationalinvarianceofthehomoge-neouselectrongas,wefind34
χs,µρ(q,ω)fx,ρσ(q,ω)χs,σν(q,ω)=Vµν(q,ω)+Sµν(q,ω)whereallquantitiesaretime-orderedandwhereVµνandSµν,atzerotemperature,aregivenby
Vµν(q,ω)=
d3pd3kpµv(|p−k|)kν×
×
¯p−q/2θp+q/2θ
ω−εp+q/2+εp−q/2+iη
¯θk+q/2θk−q/2
ω−εk+q/2+εk−q/2+iη
,(19)
Sµν(q,ω)=
d3ppµpν×
¯p+q/2θp−q/2θ
(ω−εp+q/2+εp−q/2−iη)2
×{Σx(p+q/2)−Σx(p−q/2)}.(20)
Here,wehavedenotedbypµ,kµthefour-dimensional
vectorsofcomponents(1,p),(1,k),whiletheHeavisidestepfunctions
θq=θ(εF−εq)
and
¯q=1−θqθ
containtheFermienergyεF.
InthelargeωlimitthesumVoo+Soogoeslike1/ω4andthereforeχoo=χs,oo+O(1/ω4).Sincetheresidueofthesecond-orderpoleinχs,ooonlydependsonthedensity,theapproximatedresponsefunctionχooobeysthef-sumrule,asitshould.
E.
Conservationlaws
Asmentionedseveraltimes,thevariationalandΦ-derivableapproachtoTDDFTleadstodensity-functionalapproximationswhichpreservemanyphysi-calpropertieswhenthesystemissubjecttoexternalperturbations.Ofcourse,TDDFTbeingaone-electronliketheorywithamultiplicativepotentialtriviallyobeysthecontinuityequationandthusparticleconservation
foranyapproximationtoexchangeandcorrelation.Theconservationofotherquantitieswillhoweverdependonthechoiceofsuchapproximations.
Inthissubsectionwewill,asanexample,showhowmomentumconservationfollowsfromthegeneralfor-malism.Intheone-electronliketheoryofTDDFT,thechangeoftotalmomentumperunittimeissimplygivenbyn∇(w+VH+vxc).Theapproximationtoexchangeandcorrelationismomentumconservingprovidedvxcsatisfiesthezeroforcetheorem.36Designingexchange-correlationpotentialsthatfulfillsuchaconstraintisnontrivial,37andseveralwell-knownapproximationsareac-tuallynotconserving.38,39Below,weshowthatanyap-proximatevxcgeneratedbyourvariationalapproachisfullyconserving.
FromSec.III,weknowthatthechangeδΦintheΦ-functionalisjust
δΦ=ivxc(1)δn(1)d1(21)whenwechangetheone-bodypotentialfromVtoV+δV.
InthevariationalapproachalaKlein,Eq.(21)playsa
similarroleastheBaymconstructionδΦ=Tr[ΣδG].InordertoprovetheconservationofthetotalmomentumwehavetoshownthatvxcdoesnotexertanyforceontheKohn-Shamsystem.Letusshiftallcoordinatesbythesametimedependentinfinitesimalvectorδ(t).ThefunctionalΦdoesnotchangesincetheinteractionpo-tentialisinvariantundertranslations.Thisimpliesthat
0=δΦ=i
vxc(1)δ(t1)·∇1n(1)d1.
(22)
Onepartialintegrationandthefactthatthevectorδ(t)isarbitraryandindependentofpositiongives
n(rt)∇vxc(rt)d3r=0.(23)Thismeansthatthereisnocontributionfromexchange
andcorrelationtothetotalforceappliedtotheclassicalexpressionF=−should.
Theproofofmomentumconservationinthepresencesystemwhichisgivenbythen∇w,asitofvectorpotentialsandcurrentsfollowsinasimilarwayfromthecorrespondingresult
δΦ=i
Axc,µ(1)δjµ(1)d1,(24)whichweobtainedfromtheKleinfunctional.
IV.LWFUNCTIONAL
LetusnowdiscussthevariationalfunctionalofLut-tingerandWard.FromEq.(3)wefindiδYLW=Tr
1
G−1=GH+GHΣsG,
˜H
−Σs
i.e.,G
˜representsthefirstiterationtowardthefullself-consistentmany-bodyGreenfunctionstartingfromtheKohn-ShamGreenfunctionGs.Writingthetotalpoten-tialVas
V=w+VH+vxc
andeliminating˜Gs+G˜GHbetweenGsandG
,oneobtainsG˜=[Σs−vxc]Gs,andthusiδYLW
δV(1)
+
δVH
7thoseproducedbylocalpotentials(TDDFT)theLWandKleinfunctionalsgiverisetodifferentresponsefunctionsatthesamelevelofmany-bodyperturbationtheory.
V.ΨFUNCTIONALS
ThemainadvantageoftheΨfunctionalsisthattheygivethepossibilityofusingphysicalmodelsforthescreening,thecalculationofwhichisactuallyabottle-neckinpracticalapplications.Awordofcautionis,how-ever,appropriateinthiscontext.Withmodelscreenedinteractions(W’s)thereisusuallynoself-consistencywithrespecttoW,afactthatmightcompromisetheconservingpropertyofthetheory.TheΨfunctionalshavetwoindependentarguments(GandW)resultingintermslinearinthedeviationoftheactualGreenfunctionfromtheself-consistentonewhenWisawayfromthevaluewhichrendersthefunctionalstationary.WhentheΨfunctionalsareusedtoconstructresponsefunctionsofTDDFTthetheoryis,however,variationalwithrespecttotheone-bodypotentialgeneratingthenon-interactingGreenfunction-evenwhenamodelWisused.Thisfactactuallyrestoresseveralconservingpropertiesalthoughthishastobeverifiedfromcasetocase.Forinstance,choosingmodelW:swhich,likethebareCoulombin-teraction,areinstantaneousandtranslationallyinvariantwillclearlynotspoiltheconservingproperties.
The11firstΨfunctionalwasconstructedbyABLin1996.Ithastheappearance
iYABL[G,W]=Ψ[G,W]−TrΣG−lnΣ−G−H
1
+
1(2,1)
,
P(1,2)=−2
δΨ
δGδQ
[0]=0.
WethenobtainanewΨfunctionalwiththesamesta-tionarypointandthesamevalueatthestationarypoint.
8
Anexampleofasimplefunctionalobtainedinthiswayis
iYLWS[G,W]=Ψ[G,W]−TrΣG−lnΣ−G−H
1
+
12
Tr{WP+ln(1−vP)}−iUH[G].
Again,duetothesimplicityofthe”Klein”expression,wecanhereusethesamemanipulationsasweappliedtotheoriginalKleinfunctionalinordertoarriveatEq.(6).Thus,insertingthenon-interactingGreenfunctionGsintothefunctionalYABLK,YABLK[V]=Ts[n]+
wethenobtain
wn+UH+Exc[n],(27)where
Exc[n]=−iΨ[Gs,W]
−
iδn
.(28)
Infact,allfunctionals,betheyoftheΦortheΨvari-ety,havingthe“Klein”formfortheirdependenceontheexternalpotentialwhavethenicepropertythattheopti-mizingpotentialconsistsoftheexternalpotentialw,theHartreepotentialVH,andthefunctionalderivativeoftheexchange-correlationenergywithrespecttothedensityn.InEq.(28),thelastderivativeiscalculatedfromthechainrulefordifferentiationgivingtheOPM-likeequa-tion
χvδEs(1,2)xc(2)d2=
xc
2
∆W(4,5)δP(5,4)
Thequantity∆WisW−W
˜=W−v/(1−vP)andweremindthereaderthatwearehereallowedtouseany
modelforW.Inparticular,wecouldchooseWtobeW
˜,inwhichcaseourequationfortheexchange-correlationpotentialvxcreducestothesameexpressionasobtainedfromthe“Kleinversion”oftheΦformalismdescribedinSec.III.Furthermore,itiseasilyseendirectlyfromitsdefinitionthatthefunctionalYABLKbecomesindepen-dentofthechoiceofmodelWattheleveloftheRPA.Thus,atthatlevel,thisfunctionaldoesnotaddany-thingtothepreviouslydiscussedΦ-derivableschemeatthesamelevel(RPA).Being,forthemoment,contentwiththatlevelwewillherenotpursuetheYABLKanyfurther.
Finally,byaddinganappropriatechoiceforthefunc-tionalK[Q],asdiscussedabove,tothefunctionalYABLK,weobtainthesimplestfunctionalYKKofthosediscussedinthepresentwork.Wehave
iYKK=Ψ−TrGG−H
1−1+ln+
1−G−1
2
Tr{GsGsWo}.
Consequently,inthisapproximation,weobtaintheGWoself-energy
ΣδΨ
s=
910
leadingtothesamequalityofapproximation.OurmethodforimprovedapproximationswithinTDDFThasthesamefeature.Differentfunctionalshavedifferentvariationalaccuracymeaningdifferentsizesofthesec-ondordererrors.Inthepresentpaperwehavedis-cussedmainlytwofunctionals-thatduetoLuttingerandWard(LW)andthatduetoKlein(K).Theformerhasprovedtobemorestableascomparedtothelat-terasfarasconcernsthecalculationoftotalenergiesofavarietyofsystemsrangingfromthosewithverylo-calizedelectronstothosewithitinerantelectrons.ThiswouldsuggestthattheLWfunctionaloughttobeusedalsofortheconstructionofresponsefunctionswithinTDDFT.Inthepresentwork,wehavegiventheformulasfortheexchange-correlationkernelofTDDFTresultingfrombothfunctionals.Sadlyenough,wejudgethatofthesupposedlybetterLWfunctionaltobebeyondourpresentcomputationalfacilities-evenataratherlowlevelofapproximationwithinMBPT.Inordertodemon-stratethispoint,wehavegiventhediagramsrepresentingthedensityresponsefunctionresultingfromtheLWfor-mulationwithintheexchange-onlyapproximation.Wewouldstillliketodrawthereadersattentiontothefactthattheambiguityinthechoiceoffunctionalscanmostlikelybeusedtoouradvantage.Butmuchmoreresearchisneededinordertoseehowthisshouldbedone.
AveryimportantfeatureofourvariationalapproachtoTDDFTisthefactitreliesontheΦorΨderiv-abilityoftheunderlyingapproximationwithinMBPT.Combinedwiththevariationalpropertyofthechosenfunctional,thisleadstothepreservationofmanyphys-icallyimportantconservationlawsandsumrules.Andthisistrueregardlessoftheactualchosenlevelofap-proximationwithinMBPT.Thishighlydesirablefeatureisnotguaranteedinotheravailableapproachesbasedonstraight-forwarddiagrammaticexpansions,iterativetechniques,ordecouplingschemes.Forinstance,inRef.42onedevelopsadiagrammaticrepresentationfortheparticularmany-bodyperturbationschemewhichstartsfromazero-thorderHamiltonianwhichalreadygivesthecorrectdensity.43Unfortunately,thistechniquesuf-fersfromthesamebasicdrawbacksasordinaryMBPT-itis,inprinciple,divergent,summationsmustbecarriedtoinfiniteorder,andthereisnoguaranteeforobtain-ingapproximationswhichhavecertaindesirablephysi-calpropertiesautomaticallyincluded.ThesameholdstrueforexpansionswhicharebasedoniteratingthesocalledHedinequations44usingthescreenedinteractionasthe“small”parameter.45Asanexample,wehave,inthepresentwork,demonstratedhowthevariationalap-proachleadstomomentumconservationinthecaseoftheKleinfunctional.
Itisworthwhileobservingthatthesocalled”lin-earized”Sham-Schl¨uterequationactuallyturnsouttobearesultofourvariationalapproachstartingfromtheKleinfunctional.Butthisisonlytrueiftheself-energyinvolvedisaΦ-orΨ-derivableone.Inthatcase,theresultingapproximationfortheresponsefunctionis,ofcourse,conserving.
Wealsoremarkthatthesocalledoptimizedpotentialmethod(OPM)andmanygeneralizationsthereofreadilyfollowsfromthetheorypresentedhere.Asanexample,wehavegiventheexplicitformulasforthecurrentdensityresponseofahomogeneoussystemwithintheexchange-onlyapproximation.
Eventhoughwenowhaveasystematicwayofobtain-ingbetterresponsefunctionswithinTDDFTtheexpres-sionsquicklybecometoocomplicatedtobeimplementedinlow-symmetrysystems,especiallywhenwewanttoin-cludeallphysicallyrelevantprocesses.Inthiscontext,weadvocatetheuseoftheΨ-derivabletheorieswhichallowsfortheuseofmodelscreenedinteractionswithoutloosingtheimportantconservingproperties.Inthisway,impor-tantphysicaleffectslike,e.g.,astrongparticle-holeinter-actioncanbeincorporatedwithoutanexcessiveincreaseinthecomputationaleffort.Oneshould,however,keepinmindthatmodelsforthescreenedinteractionmustpossesscertainsymmetriesrelatedtotheactualsysteminorderfortheconservingpropertiestobepreserved.Wehavediscussedtheimplementationofthetheo-riespresentedherewithotherresearchgroups.OneparticularlypromisingapproachisthatwhichisbasedontheKleinfunctionalandtheΨ-formulationusingamodelscreenedinteractionlike,e.g.,astaticallyscreenedCoulombinteractionasoftenusedintheBethe-Salpeterapproach,orasimpleplasmon-poleapproximation.To-getherwithourcollaborators,40,41wehopetobeabletopresentsomenumericalresultswithinthenearfuture.
ACKNOWLEDGEMENTS
WewouldliketothankCarl-OlofAlmbladhforfruitfuldiscussionsduringthecourseofthiswork.
ThisworkwassupportedbytheEuropeanCummunity6:thframeworkNetworkofExcellenceNANOQUANTA(NMP4-CT-2004-500198).
1
2
3
E.RungeandE.K.U.Gross,Phys.Rev.Lett.52,997(1984).
L.Reining,V.Olevano,A.Rubio,andG.Onida,Phys.Rev.Lett.88,066404(2002).
A.Marini,R.DelSole,andA.Rubio,Phys.Rev.Lett.91,
4
5
256402(2003).
D.J.W.GeldartandR.Taylor,Canad.J.Phys.48,155(1970).
A.Holas,P.K.AravindandK.S.Singwi,Phys.Rev.B20,4912(1979).
6
M.Petersilka,U.J.Gossmann,andE.K.U.Gross,in”ElectronicDensityFunctionalTheory:RecentProgressandNewDirections”,editedbyJ.F.Dobson,G.Vignale,7andM.P.Das(Plenum,NewYork,1998),p.177.8
S.KurthandU.vonBarth,unpublished.Y.-O.KimandA.G¨orling,Phys.Rev.Lett.89,0964029(2002).
10
R.T.SharpandG.K.Horton,Phys.Rev.90,317(1953).J.D.TalmanandW.F.Shadwick,Phys.Rev.A14,3611
(1976).
C.-O.Almbladh,U.vonBarthandR.vanLeeuwen,Int.12J.Mod.Phys.B13,535(1999).
13G.Baym,Phys.Rev.127,1391(1962).
14
G.BaymandL.P.Kadanoff,Phys.Rev.124,286(1961).L.J.ShamandM.Schl¨uter,Phys.Rev.Lett.51,188815
(1983).
A.L.FetterandJ.D.Walecka,”QuantumTheoryof16Many-ParticleSystems”,DoverPubl.,NewYork,2003.17
P.Danielewicz,Ann.Phys.(NY)152,239(1984).
L.M.LuttingerandJ.C.Ward,Phys.Rev.118,141718
(1960).
L.V.Keldysh,Zh.Eskp.Teor.Phys.47,1515(1964);Sov.19
Phys.JETP201018(1965).
R.vanLeeuwenandN.E.Dahlen,in”TheElectronLiq-uidParadigminCondensedMatterPhysics”,ProceedingsoftheInternationalSchoolofPhysics”EnricoFermi”,vol.157eds.G.F.GiulianiandG.Vignale(IOSPress,Ams-20
terdam,2004).
ForfunctionalsontheKeldyshcontourseealsoR.van21Leeuwen,Phys.Rev.Lett.80,1280(1998).22
A.Klein,Phys.Rev.121,950(1961).
N.E.DahlenandU.vonBarth,Phys.Rev.B69,19510223
(2004).
N.E.DahlenandU.vonBarth,J.Chem.Phys.120,682624
(2004).
N.E.Dahlen,R.vanLeeuwenandU.vonBarthInt.J.25
Quant.Chem.101,512(2005).
N.E.Dahlen,R.vanLeeuwen,andU.vonBarth,Phys.26Rev.A,acceptedforpublication
27
P.HohenbergandW.Kohn,Phys.Rev.136,B864(1964).ForanelementaryintroductiontotheKeldyshformal-ismsee”IntroductiontotheKeldyshFormalismandAp-plicationstoTime-DependentDensityFunctionalThe-
11
ory”,R.vanLeeuwen,N.E.Dahlen,G.Stefanucci,C.-O.Almbladh,andU.vonBarth,LecturesNotesinPhysics,28
SpringerVerlag,2005(toappear),alsocond-mat/0506130.D.J.W.GeldartandR.Taylor,Canad.J.Phys.48,16729
(1970)
D.C.LangrethandJ.P.Perdew,Phys.Rev.B15,288430
(1977).
C.F.RichardsonandN.W.Ashcroft,Phys.Rev.B50,31
8170(1994).
D.C.Langreth,M.Dion,H.Rydberg,E.Schr¨oder,P.Hyldgaard,B.I.Lundqvist,Int.J.Quant.Chem.101,32
599(2005).
G.VignaleandM.Rasolt,Phys.Rev.Lett.59,236033
(1987).
K.CapelleandG.Vignale,Phys.RevB,65,11310634
(2002).
R.vanLeeuwen,inProgressinTheoreticalChemistryandPhysicsvol.14,”TheFundamentalsofElectronDensity,DensityMatrixandDensityFunctionalTheoryinAtoms,MoleculesandtheSolidState”eds.N.I.Gidopoulosand35
S.Wilson(Kluwer,2003).
R.vanLeeuwen,in”ProgressinNonequilibriumGreen’sFunctionsII”,eds.M.Bonitz,D.Semkat(WorldScientific,362003).
37
R.vanLeeuwen,Int.J.Mod.Phys.B15,1969(2001).J.F.Dobson,M.J.B¨unnerandE.K.U.Gross,Phys.38
Rev.Lett.79,1905(1997).
J.B.Krieger,YanLiandG.J.Iafrate,Phys.Rev.A45,39
101(1992).
R.vanLeeuwenandE.J.Baerends,Phys.Rev.A49,242140
(1994).
ThisisacollaborationbetweentheSanSebastianandLundnodesoftheEuropeanNetworkofExcellencecalled41NANOQUANTA.42
A.RubioandM.Gr¨uning(privatecommunication).
I.V.TokatlyandO.Pankratov,Phys.Rev.Lett.86,207843(2001).44A.G¨orlingandM.Levy,Phys.Rev.A50,196(1994).45
L.Hedin,Phys.Rev.139,A796(1965).
F.Bruneval,F.Sottile,V.Olevano,R.DelSole,andL.Reining,Phys.Rev.Lett.94,186402(2005).
因篇幅问题不能全部显示,请点此查看更多更全内容