1
Vol.25No.1February2011
2011
2
CHINESEJOURNALOFMATERIALSRESEARCH
2024–T32524–T34
∗
1
1
2
1.2.
621000
610065
2024–T3
2524–T34,
,
0.1
15Hz
:,
,
,
2024
,
2524
2524
Fe
β
,
;
2024
2524
,
,
,
,
TG111
1005-3093(2011)01-0067-06
TheMechanismofFatigueCrackInitiationof2024–T3and
2524–T34AluminumAlloys
LITang1
TAOJunlin1
WANGQingyuan2∗∗
1.CollegeofCivilEngineeringandArchitecture,SouthwestUniversityofScienceandTechnology,Mianyang621000
2.DepartmentofEngineeringMechanics,SichuanUniversity,Chengdu610065
*SupportedbyNationalFundsforDistinguishedYoungScientistsofChinaNo.10925211andSouthwestUniversityofScienceandTechnologyFundsforDoctorsNo.08ZX0108.ManuscriptreceivedJune11,2010;inrevisedformNovember15,2010.
**Towhomcorrespondenceshouldbeaddressed,Tel:(028)806919,E–mail:wangqy@scu.edu.cn
ABSTRACTThemicrostructureandmechanismoffatiguecrackinitiationof2024–T3and2524–T34Alalloyswereinvestigated.Four–pointbendingandtension–tensionfatiguetestsonthetestedalloyswithafrequencyof15Hz,R=0.1alongtherollingdirectionwereconductedatroomtemperature.Itwasfoundthattheflatgrainwaselongatedalongtherollingdirection,showingthelaminargrainstructure.Theamountofcoarseandirregularparticlesandthedensityofsecondaryparticlesdistributedin2024weremuchhigherthanthatin2524.Particlesin2524distributedstrippedalongtherollingdirection.Themajorityoffatiguecracksof2524wereinitiatedonthecoarseβphasesecondparticle,containingFe,afewofthemformedonsitesofmaterialdefectsorslipbands.TheintrusionandextrusioninducedbyslipbandintheAlcladdinglayerprovidedprincipalfatiguecrackinitiationsitesfor2024and2524Al–claddingaluminumalloys.
KEYWORDSfoundationaldisciplineinmaterialsscience,aluminumalloy,thesecond–phaseparticle,fatiguecrack,fatiguecrackinitiation1931
,2024
2524
,
2024–T3
20
90
,
,
(AluminumCompanyofAmerica)
10925211
,
(constituentparticles)
*
,
08ZX0108
2024
11
,,
2010
6
2010
11
15
[1−8]
:
,
2524
[9−13]
68
25
2000
θ(Al2Cu)
5.08mm;
T34;
2024–O
S(Al2CuMg)
,
2.mm,
,
Al–Cu
,
T3
,
2024–O
:495
,
,,
(
427
)
5.3
/min,
,,
0.9
/min,
40min;
,
3%
,
12524
,
374MPa,
484MPa,
18.2%;2024
303MPa,
386MPa,
[1−6]
,
14%
,
[14]
,
,
2524
[14]
,2024
[1]
MTS810
INSTRON8800R=0.1,
,,
,
15Hz,
[1−6]
Zabett
Plumtree[1]Bowels[2]
,
500
,
:2024
–
;2524
,
;2524
Grosskreutz
Shaw[3]
,
,
(
FeSi
(inclusion
)
clusters)
Kung
Fine[4]
,
[15]
,
HitachiS–4300
(SEM)
β
(Al7Cu2Fe)
,
S
Olympus
(Al2CuMg)
,
[5,6]
Newman
2
2.1
Edwards[7]
,
2024–T3
(inclusionclusters)
,
1
2024
2524LS
,
,
LTST
2024
,
:L
,S
,
,T
;LT
[8]
,ST
,LS
1
,
,
2024,
2524
,
,,
,
,
2524
1
,
,
(
):
(Al,
2024
,
cladding)
2524
–T34
12524
2024
Table1ChemicalcompositionofAlalloys2524and2024(massfraction,%)
Element25242024
Si0.060.50
Fe0.120.50
Cu4.0–4.53.8–4.9
Mn0.45–0.70.3–0.9
Mg1.2–1.61.2–1.8
Cr0.050.10
Zn0.150.25
Ti0.100.15
AlRes.Res.
1
:2024–T3
2524–T34
69
1
2024–T3
2524–T34
Fig.1Triplanaropticalmicrographillustratingthegrainstructureandmorphologyof2024–T3(a)
and2524–T34(b)Alalloy
2
2024–T3
Fig.2Opticalmicrographofsecond–particlesof2024–T3aluminumalloy
2.2
EDS
S
(Al2CuMg),
θ
(Al2Cu)
2b
,
3
2024–T3
2024
,
,
3b
3a
,
,
,
(
,
2)
,
3b
EDS
,
(
,
2a
;
2b
)
AlCuMnFe
,
Si;
Al
Cu
[1−6]
2524
,
(10–40µm)EDS
,
AlCuMnFe
SEM
EDS
Si
β
,Al7Cu2Fe,
,
2524
[16]
[17–19]
:
Al–Cu–Mg,
:
,
Ω
,Al20Cu6(Fe,
Fe
()Mn
β
(Al7Cu2Fe,
Mn)3
2024),
7XXX,
Al2Cu2(FeMn)3)Fe(
4a);
AlCu
θ
Al7Cu2(Fe,Mn)[4,20]
(
θ
(Al2Cu)
AlCuMg
S
(
4b);
2b
bc
Al20Cu2Mn3(dispersoids)(
4a)
70
25
3
2024–T3
Fig.3SEMimagesforsecond–phaseparticlesbroken(a)anditsmagnifiedimage(b)in2024–T3
4
2524–T34
Fig.4SEMmicrographsofirregularandrectangularparticles(a)andsphericalparticle(b)in2524–T3
aluminumalloy
52524
Fig.5Imagesof2524Alalloyshowingcrackinitiationsitesatstripdistributionzoneofthesecond–
phaseparticles(a),materialdefects(b),largeandirregularparticle(c)andsphericalparticle(d)
1
:2024–T3
2524–T34
71
6
2024
(σmax=0.4σy,Nf=1.48×106)(a)
,(b)
Fig.6SEMmicrographforfracturesurfaceof2024specimen(σmax=0.4σy,Nf=1.48×106),(a)fatigue
crackinitiationsites,(b)brokenparticlesinfracturezone
7
2524
Fig.7SEMmicrographforfracturesurfaceof2524specimen,(a)fatiguecrackinitiationsitesinAl
cladding(σmax=1.06σy,Nf=7.06×104),(b)fatiguecrackinitiatedatparticles(σmax=1.3σy,Nf=5.43×104)
,
4a
,
,
2.3
,
,
,
,
2524
2524
2024
,
(
5a)(
(
7a),
,
,
5c),
(
5b)
2524
,
5d
,
θ
(
7b)
,
3
1.2024
140%σy
2524
,
θ
,
β
,
,
2.
2024
,
,
θ
Fe
()Mn;
2.4
AlCu
θ
Al,Cu,Mg
S
2524
2024
,
,
Fe
()Mn
β
;
AlCu
θ
Al,Cu,Mg
S
;
(
6a)
,
Mn
Al20Cu2Mn3
,
,
3.2024
2524
,
,
6b
(
)
722524
Fe
β
,
,
,
θ
Dr.Zhai
1A.Zabett,A.Plumtree,Microstructuraleffectsonthesmallfatiguecrackbehaviorofanaluminumalloyplate,FatigueandFract.ofEngng.Mater.andStruc.,18,8019(1995)
2
C.Q.Bowles,J.Schijve,Theroleofinclusionsinfatiguecrackinitiationinanaluminumalloy,InternationalJ.offatigue,9,171(1973)
3
J.C.Grosskreutz,G.G.Shaw,CriticalMechanismsintheDevelopmentofFatigueCracksin2024–T4Aluminum,1968.
4
C.Y.Kung,M.E.Fine,Fatiguecrackinitiationandmicro-crackgrowthin2024–T4and2124–T4aluminumalloys,MetallurgicalTransactions,10(A),603(1979)
5
E.A.DeBartolo,B.M.Hillberry,Characterizationoffa-tiguecracknucleationsitesin2040–T3aluminumalloy,Fatigue99;ProceedingsoftheSeventhInternationalFa-tigueCongress,(Beijing,China,1999)
6
J.C.Newman,Fracturemechanicsparametersforsmallfa-tiguecracks,In:SmallCrackTestMethods,ASTMSTP1149,editedbyJ.M.LarsenandJ.E.Allison(AmericanSo-cietyforTestingandMaterials,Philadelphia,1992)p.6–337
J.C.Newman,P.R.Edwards,Short–CrackGrowthBehav-iorinanAluminumAlloy–AnAGARDCooperativeTestProgramme,AGARD732,Dec.1988.
8
AliMerati,Astudyofnucleationandfatiguebehaviorofanaerospacealuminumalloy2024–T3,InternationalJour-nalofFatigue,27,33(2005)
9
T.S.Srivatsan,D.Kolar,P.Magnusen,Thecyclicfatigueandfinalfracturebehaviorofaluminumalloy2524,Mate-rialsandDesign,23,129(2003)
25
10T.S.Srivatsan,D.Kolar,P.Magnusen,Influenceoftemper-atureoncyclicstressresponse,strainresistanceandfrac-turebehaviorofaluminumalloy2524,MaterialsScience
andEngng.,A314,118(2001)11
P.J.Golden,A.F.GrandtJr.,G.H.Bray,Acomparisonoffatiguecrackformationatholesin2024–T3and2524–T3aluminumalloyspecimens,InternationalJ.ofFatigue,21,
211(1999)12
A.F.Grandt,D.G.SextonJr.,P.J.Golden,Acomparisonof2024–T3and2524–T3aluminumalloysundermulti–sitedamagescenarios,in:Proceedingsofthe19thSymposiumoftheInternationalCommitteeonAeronauticalFatigue,editedbyR.CookeandP.Poole(Edinburgh.Scotland.
1997)p.659–66913
T.Li,Z.G.Chen,Highcyclefatiguepropertiesofan2524Alalloyinfour–pointbend,in:Proceedingsof
ICHMM2008(Huangshan,China,2008)14
T.Zhai,
Y.G.Xu,
J.W.Martin,
A.J.Wilkinson,
G.A.D.Briggs,Aself–aligningfour–pointbendtest-ingrigandsamplegeometryeffectinfour–pointbendfatigue,Int.J.Fatigue,21,8(1999)15
LITang,Investigationonfatiguebehaviorof2000serieshighstrengthaluminumalloys,Ph.Dthesis,SichuanUni-versity(2008)(,2XXX,
(2008))
16
MetalsHandbook,9thed.,MetallographyandMicrostruc-tures,Vol.9(MaterialsPark,OH:ASMInt.,1985)p.355–357
17R.Hutchinson,S.P.Ringer,Metall.Mater.Trans.A,31,2731(2000)
18
L.M.Wang,H.M.Flower,T.C.Lindley,PrecipitationoftheOmegaphasein2024and2124aluminumalloys,Scr.Mater.,41,391(1999)
19
B.Q.Li,F.E.Wawner,Dislocationinteractionwithsemico-herentprecipitates(Ωphase)indeformedAl–Cu–Mg–Agalloy,ActaMater.,46,83(1998)
20L.F.Mondolfo,AluminumAlloys,StructureandProper-ties(Butterworths,Boston,1976)p.842
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- haog.cn 版权所有 赣ICP备2024042798号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务