您好,欢迎来到好走旅游网。
搜索
您的当前位置:首页周末测试16(三角函数的概念及诱导公式)-2020-2021学年人教A版高中数学必修第一册

周末测试16(三角函数的概念及诱导公式)-2020-2021学年人教A版高中数学必修第一册

来源:好走旅游网
2020-2021学年度第一学期高一年级周末测试

数学试卷(十六)

时间:100分钟 分值:100分 考查范围:三角函数的概念及诱导公式

一、选择题(本大题共10小题,每题3分,共30分) 1、设

是第一象限角,且coscos,则是第( )象限角 2B.二

C.三

D.四

A.一

552,则的值为( ) Psin,cos2、已知点落在角的终边上,且0,662 35 65π 3A.B.C.D.

11 63、若3sincos0,则

1( ) 2cossin2C.

A.

10 3B.

5 32 3D.2

4、已知tancos223,则( )

663 2A.1 2B.C.

1 2D.3 25、已知x∈R,则下列等式恒成立的是( )

sinsinx=sinx B.A.

xcosx C.cosxtanx D.cosxcosx 226、设asin555,bcos,ctan,则( )

121212B.acb

C.bca

D.bac

A.abc

7、已知tan3,则

3sincos( )

5cossinC.6

D.8

A.2 B.4

8、已知sin θ+cos θ=

4,θ∈(0,),则sin θ-cos θ的值为( ) 341 3A.-

2 3B.C.

2 3D.-

1 39、已知sin3cossin,则sincoscos2( ) 2A.

1 5B.

2 5C.

3 5D.

5 510、函数y1sinx0x的最大值和最小值分别为( )

sinxcosx2A.1,1

B.

22 ,22C.

2,0 2D.0,1

二、填空题(本大题共5小题,每小题4分,共20分)

11、已知cos13,且,,则tan_________.

322271,则cos________. 85812、已知cos13、已知扇形的半径为2 cm,面积为4 cm2,则扇形的圆心角为________.

sin32cos314、若tan3,则的值为________________. 33sin2cos15、若cos75

1 ,为第三象限角,则cos255sin435的值是 .

3三、解答题(本大题共5小题,每小题10分,共50分) 16、(1)已知tan3,计算

4sin2cos 的值 .

5cos3sin(2)已知tan3,求2sincoscos2的值. 4

17、已知、均为锐角,cos()sin()。若f()sincos,求44f的值。 2

37cossin

18、已知22f()sin()1,求tan的值;(3)若3(1)化简f();(2)若f()1f,求635f的值. 6

19、已知tan,

13是关于x的方程x2kxk230的两个实根,且,求tan2cossin的值.

20、是否存在、,(,),(0,)使等式sin(3)2cos(),

2223cos()2cos()同时成立?若存在,求出、的值;若不存在,请说明理由.

数学试卷参

答案速查:

题号 答案 1 B 2 C 3 A 4 A 5 A 6 D 7 B 8 A 9 C 10

D

11、 24

15

12、 13、 2 rad 14、 29 25122 315、 三、解答题 16、【答案】(1)

522. ;(2)

725【解析】(1)∵tan3 ∴cos0

1cos=4tan24325.

∴原式=

153tan5337(5cos3sin)cos(4sin2cos)(2)2sincoscos22sin2cos2sincoscos2sincos22

2sin2sincoscos22tan2tan1= 222sincos1tan3321931224484=. 2925311164()。 2217、【解析】由cos()sin(),得cos()cos又、均为锐角,则2(),即4。

于是,fsincos02。

2222,318、【答案】(1)f()cos;(2)当为第四象限角时,sin1cos2tansin122;(3). cos3【解析】(1)f()(sin)(cos)cos

sin(2)f()cos1, 3当为第一象限角时,sin1cos2sin2222 ,tancos3sin2222 ,tancos3当为第四象限角时,sin1cos2(3)f1cos 663551fcoscoscos3 666619、【答案】2

【解析】由题意,tan,

1是关于x的方程x2kxk230的两个实根, tan可得tan1k231,解得k2, tan13k2,解得tan1, ,则tan2tan2,所以cossin2. 2又由则sincos20、【解析】答:存在满足要求的、.

sin2sin解:由条件得3cos2cos①②

①2②2得sin23cos22,cos212即cos. 22(,),

224或4.

将3代入②得cos.又(0,), 426,代入①可知,符合.

将4代入②得βπ,代入①可知,不符合. 6综上可知π,β 46

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- haog.cn 版权所有 赣ICP备2024042798号-2

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务