搜索
您的当前位置:首页正文

离散数学期末复习试题及答案(一)

来源:好走旅游网
 离散数学习题参考答案

第一章 集合

1.分别用穷举法,描述法写出下列集合 (1) 偶数集合

(2)36的正因子集合 (3)自然数中3的倍数 (4)大于1的正奇数

(1) E={,-6,-4,-2,0,2,4,6,} ={2 i | i I }

(2) D= { 1, 2, 3, 4, 6, } = {x>o | x|36 } (3) N3= { 3, 6, 9, ```} = { 3n | nN } (4) Ad= {3, 5, 7, 9, ```} = { 2n+1 | nN }

2.确定下列结论正确与否 (1)φφ × (2)φ{φ}√ (3)φφ√ (4)φ{φ}√ (5)φ{a}× (6)φ{a}√

(7){a,b}{a,b,c,{a,b,c}}×(8){a,b}{a,b,c,{a,b,c}}√(9){a,b}{a,b,{{a,b}}}× (10){a,b}{a,b,{{a,b}}}√

3.写出下列集合的幂集 (1){{a}} {φ, {{ a }}} ( 2 ) φ {φ} (3){φ,{φ}}

{φ, {φ}, {{φ}}, {φ,{φ}} } (4){φ,a,{a,b}}

{φ, {a}, {{a,b }}, {φ}, {φ, a }, {φ, {a,b }}, {a, {a b }}, {φ,a,{ a, b }} } (5)P(P(φ))

{φ, {φ}, {{φ}}, {φ,{φ}} }

1

4.对任意集合A,B,C,确定下列结论的正确与否 (1)若AB,且BC,则AC√ (2)若AB,且BC,则AC× (3)若AB,且BC,则AC× (4)若AB,且BC,则AC ×

5.对任意集合A,B,C,证明

(1)A(BC)(AB)(AC) 左差A(BC)差A(BC)D.MA(BC)

分配(AB)(AC)右(2)A(BC)(AB)(AC)1)左差A(BC)(1)的结论(AB)(AC)

差(AB)(AC)右

2)左差A(BC)D.MA(BC)分配(AB)(AC)差(AB)(AC)右(3)A(BC)(AB)(AC)左差A(BC)D.MA(BC) 幂等(AA)(BC)

结合,交换(AB)(AC)右(4)(AB)BAB 左差(AB)B对称差((AB)B)((AB)B)

分配,结合((AB)(BB))(A(B)B))

2

互补((AB)U)(A)

零一

(AB)(AB)右(5)(AB)CA(BC) 左差(AB)C结合A(BC)

D.MA(BC)差A(BC)(6)(AB)C(AC)B左差(AB)C结合A(BC)交换A(CB)结合(AC)B

差(AC)B右(7)(AB)C(AC)(BC)右(5)A(C(BC))差A(C(BC))

分配A((CB)(CC))互补A((CB)U)

零一A(CB)交换A(BC)(5)(AB)C左

6.问在什么条件下,集合A,B,C满足下列等式

(1)A(BC)(AB)C左(AB)(AC)右若要右左,须CA(BC),

CA时等式成立

(2)ABA左右是显然的,AABAB,AB,

AB时等式成立

3

(3)ABBABB,BB,B,代入原式得A,

AB时等式成立

(4)ABBAABBA,只能AB,AB, BA,BA,AB时等式成立

(5)ABAB,若B,bB,

当bA,bABA矛盾;当bA,bABA矛盾

(6)ABAB右左是显然的,ABAB,AAB,ABBAB,BAABAB时等式成立

(7)(AB)(AC)A左(AB)(AC)A(BC)A(BC)A(BC)A

ABC时等式成立

4

(8)(AB)(AC)左(AB)(AC)A(BC)A(BC)A(BC)

A(BC),AB,AC时等式成立

(9)(AB)(AC)左(AB)(AC)A(BC)A(BC)A(BC)

A(BC)时等式成立

(10)(AB)(AC)((AB)(AC))((AB)(AC))(AB)(AC)(AB)(AC)

由(6)知,(AB)(AC),ABAC,ABAC时等式成立

(11)A(BA)BA(BA)(AB)(AA)(AB)U(AB)B

AB时等式成立

7.设A={a,b,{a,b},},求下列各式(1)φ∩{φ}=φ (2){φ}∩{φ}={φ}  (3){φ,{φ}}-φ={φ,{φ}} (4){φ,{φ}}-{φ}= {{φ}} (5){φ,{φ}}-{{φ}}={φ} (6)A-{a,b}={{a,b}, φ} (7)A-φ = A

(8)A-{φ}={a,b,{a,b}} (9)φ-A=φ (10){φ}-A=φ

5

8.在下列条件下,一定有B=C吗? (1) ABAC

否,例:A={1,2,3},B={4},C={3,4},

ABAC{1,2,3,4},而BC。

(2)ABAC

否,例:A={1,2,3},B={2,3},C={2,3,4}

ABAC{2,3},而BC。

(3)ABAC

对,若BC,不妨,aB,aC,若aA,aAB,aAB,aAB,aAC,aAC,aAC; 若aA,aAB,aAB,aAB,aAC,aAC,aAC矛盾(4)ABAC且ABAC

bB,若bA,bABAC,bC,若bA,bABAC,bC,

BC,同理,CB,BC

9. (1) (AB)(BC)AB

证:a左,a(BC),aB,aB;a(AB),而aB,aA,aAB

(2)若A(BC)且B(AC),则B。

若B,aB(AC)(AC),aA(BC),aC,aB即aB,矛盾

6

10.化简

((ABC)(AB))((A(BC))A)(AB)A(AB)A

(AA)(BA)(BA)BA11. 设A={2,3,4},B={1,2},C={4,5,6},求 (1)AB{1, 3, 4}  (2)ABC{1,3,5,6} (3)(AB)(BC){2,3,5,6}

12. 设A={1,2,3,4},B={1,2,5},求 (1) P(A)P(B){φ,{1},{2},{1,2}} (2) P(A)P(B)

{φ,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},

{1,2,3,},{1,2,4,},{1,3,4,},{2,3,4},{1,2,3,4,},{5},{1,5}, {2,5},{1,2} } (3)P(A)P(B)

{ {3},{4},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4}, {2,3,4},{1,2,3,4} } (4)P(A)P(B)

{{3},{4},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4}, {2,3,4},{1,2,3,4},{5},{1,5},{2,5},{1,2,5} }

7

因篇幅问题不能全部显示,请点此查看更多更全内容

Top