您好,欢迎来到好走旅游网。
搜索
您的当前位置:首页踝关节骨折分类方法

踝关节骨折分类方法

来源:好走旅游网


Lauge-Hansen分型最早报道于1950年,Maisonneuve骨折最早报道于1840年,但时代的更迭并没有使其科学意义褪色,现今仍在临床广泛应用;因此余认为,经得住时间检查的文章其价值会很大。

这篇文章的出处为 AJR:135, November 1980,年代已经较为久远,已经30多年。从行文看,作者可能是一位radiologist,而不是orthopaedic surgeon,但是文章的实用价值非常大,对于Lauge-Hansen分型中损伤机制的阐述以及分型法则的概括简明而扼要,如作者所言,通过其诊断流程,医生通过X线片可迅速做出诊断分型。

Classification of Ankle Fractures: An Algorithm

踝关节骨折的分类法则 Howard K. Arimot& . Forrester

In I950, Lauge-Hansendevised a classification of ankle fractures based on the position of the foot and the deforming force at the time of injury. This has been widely accepted by

orthopedists, but is not in general use by radiologists. An algorithm based on his classification that allows rapid assessment of the mechanism of injury in 90%- 95% of cases has been devised by the authors. Identification of the fractures and classification of the type of injury allows diagnosis of the otherwise occult ligamentous injuries. On the basis of location and appearance of the fibular fracture, the four types of injuries are immediately identified: pronation-abduction, pronation-lateral rotation, supination-adduction, and supination-lateral rotation. Subsequent assessment for medial malleolar fracture and then posterior malleolar fracture defines the stage of completeness of the injury and localizes the sites of ligamentous disruption.

1950年,Lauge-Hansen根据损伤时足的位置和变形力量制定了踝关节骨折的分类。这一分类系统已被众多的骨科医生广泛接受,但其应用在放射科医生中却并不普及。由作者对这一分类所制定规则可迅速地对90%- 95%的病例做出损伤机制的评估。骨折及损伤分型的鉴别有利于诊断是否存在隐匿性韧带损伤。根据腓骨骨折的部位和表现,可立即鉴别出损伤的四个类型:旋前外展型,旋前外旋型,旋后内收型以及旋后外旋型。对于内踝和后踝骨折的进一步评估可确定损伤的完整分期以及韧带断裂的位置。

In 1 950 Lauge-Hansen devised a classification of ankle injuries based on the position of the foot and the deforming force at the time of injury [1 , 2]. His experimental work has been widely accepted and serves as a basis for evaluating ankle injuries.

1950年,Lauge-Hansen根据损伤时足的位置和变形力量制定了踝关节骨折的分类[1 , 2]。这一分类系统已被广泛接受并作为踝关节损伤评估基础。

By fixing fresh cadaver feet to boards and subjecting them to different stresses, Lauge-Hansen established four basic types of ankle injuries: pronation-abduction, pronation-lateral rotation (eversion), supination-adduction, and supinationlateral rotation (inversion). The first term of this dual designation refers to the position of the foot at the time of injury; the second refers to the deforming force. He discovered that with each type of force to the ankle, injury to the ligaments and bones usually occurs in a predictable sequence. If the force ceases to act at any point in the sequence, an incomplete series of injuries results [3, 4]. Thus, if the position of the foot during the injury and the direction of the deforming force are known, an accurate assessment of both the radiographically invisible ligamentous injuries and the obvious fractures

can usually be made. Despite this potential for a precise and sophisticated radiographic report, why isn’t the Lauge-Hansen classification universally used by radiologists? Why is there a persistence in the use of purely descriptive terms such as ‘ ‘ fractured medial malleolus’ ‘ or ‘ trimalleolar fracture’ ‘ as a diagnostic summary? An isolated medial malleolar fracture may reflect a pronation or a supination injury. Similarly, a ‘ ‘trimalleolar’ ‘ fracture may be the end stage of both a pronation-lateral rotation or a supination-lateral rotation injury. If reduction of the fracture is based on reversal of the forces of injury, it is important to determine the mechanism of injury.

通过将新鲜尸体足部固定在木板上,然后对其施以不同的应力,Lauge-Hansen确立了踝关节损伤的四个基本类型:旋前外展型,旋前(外翻)外旋型,旋后内收型以及旋后(内翻)外旋型。这种双重命名方式的第一项是参照损伤时足的位置;第二项参照变形力。其在研究中发现,根据对每型损伤施加的应力情况,韧带和骨损伤的发生常常出现可预测的结果。如果施加的应力停止于某一点,就会出现不完全的损伤结果[3, 4]。因此,如果损伤中足的位置和变形力的方向是可知地,那么X线片上不可见的韧带损伤和明显可见的骨折常可获得准确地评估。尽管这可能精确地作出X线片报告,但为何Lauge-Hansen分类未被放射科医生广泛应用?为何在诊断时总是应用像内踝骨折,三踝骨折等这类纯粹描述性用语?单纯的内踝骨折可表现为旋前或旋后损伤。相似地,三踝骨折可以是旋前外旋或旋后外旋的最后一期。如果骨折复位施以与损伤相反的力量,那么确定损伤的机制就变得十分重要。

Unfortunately, the patient with a fractured ankle is generally not able to state what position his foot was in at the time of the accident. Unlike the experimental situation, the radiologist must reconstruct this information from the specific location and appearance of the fractures. Lauge-Hansen’s descriptions of the injury pattern, although precise, are cumbersome to use in the analysis of the injury from the radiographic information.

Using Lauge-Hansen’s data, we devised an algorithm that allows rapid assessment of the mechanism of injury. Recognition of the number of fractured malleoli establishes whether the injury was complete or arrested at an intermediate stage. From this information, the ligamentous injuries can often be inferred from the fracture pattern.

不幸地的是,踝关节骨折患者总是不能诉说损伤事故发生时足部所处的位置。与试验时的情况不同,放射科医生应通过骨折的特定部位和表现重构踝关节的损伤信息。Lauge-Hansen对损伤模式的描述尽管较为准确,但通过放射学信息对损伤进行分析时,其应用尚不甚方便。

Four Mechanisms of Injury

踝关节损伤的四种机制

Pronation-Abduction

旋前外展型

With the foot in a pronated attitude, the talus is abducted in the ankle mortise resulting in traction on the medial ankle structures and compression laterally (fig. 1 A). The following injuries occur to the bones and ligaments in order:

足部旋前状态下,距骨在踝穴内外展可导致踝关节内侧结构的牵拉和外侧结构的压缩(图. 1 A)。骨和韧带的损伤以如下顺序发生:

Stage I. Transverse fracture of medial malleolus or rupture of deltoid ligament.

Stage II. Rupture of both anterior and posterior tibiofibular ligaments with fracture of posterior

tibia.

Stage III. Bending fracture of the fibula, generally just above the ankle joint (fig. 1 B). The short oblique fracture of the fibula runs upward from medial to lateral, is not steeply angled, and is best seen on the anteroposterior view. When the medial malleolus is fractured, it is transverse [5].

I度内踝的横行骨折或三角韧带断裂。 II度胫腓前、后韧带断裂伴有胫骨后侧骨折。

III度腓骨屈曲型骨折,通常位于踝关节上方(图. 1 B)。正位相上可见腓骨短斜形骨折的走行方向从内侧向外侧,成角并不锐利。内踝如有骨折,其为横行[5]。

An anteroposterior radiograph of the ankle (fig. 1 C) illustrates the oblique fibular fracture caused by the pronationabduction force as it acts on the lateral structures of the ankle. Widening of the medial ankle mortise establishes the presence of a deltoid ligament tear. The presence of a short oblique fibular fracture (often with lateral comminution) suggests that this is stage III of a pronation abduction injury. By inference, then, the posterior tibiofibular ligament is probably torn despite lack of posterior fracture on the lateral view.

踝关节正位相(图. 1 C)显示旋前外展暴力作用与踝关节外侧结构致腓骨斜形骨折。内侧踝穴的增宽表明存在三角韧带撕裂。腓骨的短斜形骨折(常常伴有外侧粉碎)表明其旋前外展损伤为III度。由此推断,尽管缺少侧位相的后侧骨折,但胫腓后韧带可能撕裂。

Fig. 1 .-Pronation-abduction injury. A, Representation of forces. B, Osseous injuries. C, Typical oblique fracture of distal fibula denotes pronation injury and establishes fracture as

pronation-abduction stage Ill. Widening of medial ankle joint indicates tear of deltoid ligament.

图1旋前外展损伤。A 暴力表现B 骨损伤C 腓骨远端典型斜形骨折表明为旋前损伤,造成的骨折为旋前外展III度。内踝关节间隙增宽表明三角韧带撕裂。

Pronation-Lateral Rotation

旋前外旋型

The deltoid ligament is under stress when the foot is pronated. As the talus rotates externally, the taut medial structures are injured. Subsequently, torsion to the fibula causes rupture of the anterior tibiofibular ligament, followed by rupture of the interosseous ligament (fig. 2A). As the deforming force continues, a high spiral fracture of the fibula results. Finally, the posterior tibiofibular ligament ruptures, avulsing a thin shell of bone from the posterior malleolus as the fibula moves away from the tibia (fig. 26) [5-7]. In order of occurrence, a pronation-lateral rotation injury results in:

三角韧带在应力作用下,足部旋前。距骨外旋时,绷紧的内侧结构发生损伤。随后,腓骨的扭转引起胫腓前韧带断裂,同时伴有骨间膜的断裂(图. 2A)。变形暴力继续作用,腓骨出现高位螺旋骨折。最后,胫腓后韧带发生断裂,后踝的外侧薄层皮质发生撕脱骨折,同时腓骨与胫骨发生分离(图. 2B) [5-7]。旋前外旋型损伤的发生顺序为:

Stage I. Rupture of deltoid ligament or avulsion of medial malleolus.

Stage II. Rupture of anterior tibiofibular ligament and interosseous ligament.

Stage II!. Short spiral fracture of the fibula (typically 6 cm above ankle joint).

Stage IV. Fracture of posterior tibial margin or rupture of posterior tibiofibular ligament. I度三角韧带断裂或内踝撕脱骨折。 II度胫腓前韧带和骨间膜断裂。

III度腓骨短螺旋形骨折(通常位于踝关节水平以上6cm)。 IV度胫骨后侧边缘骨折或胫腓后韧带断裂。

The short oblique fibular fracture is high and the medial malleolar fracture is transverse. The high fibular fracture (fig. 2C) immediately establishes the mechanism of injury as that of pronation-lateral rotation. The ruptured interosseous ligament is obvious in this case from the diastasis of the tibia and fibula, and the small avulsion fragment from the lateral aspect of the tibia. The lateral projection (fig. 2D) demonstrates an avulsion of the posterior malleolus, documenting a completed stage IV pronation-lateral rotation injury.

腓骨短斜形骨折高位,内踝骨折为横行。一旦出现高位腓骨骨折(图. 2C)即可证明损伤机制为旋前外旋。这一病例中的骨间明显膜断裂,这可从胫骨与腓骨的分离,胫骨外侧面小的撕脱骨折中得到证实。侧位相(图. 2D)显示后踝撕脱骨折,表明骨折为旋前外旋完全IV度损伤。

Fig. 2.-Pronation-lateral rotation injury. A, Representation of rotation of talus within ankle mortise. B, Representation of osseous and ligamentous injuries in order of occurrence. C and D, Pronation-lateral rotation stage IV injury. Increased distance between tibia and flbula indicates intraosseous ligament rupture.

图2旋前外旋损伤。A 距骨在踝穴内的旋转表现B 骨和韧带损伤发生顺序的表现C和D 旋前外旋IV度损伤。胫骨与腓骨间距增加表明骨间膜损伤。

Supination- Adduction

旋后内收型

The talus is adducted in the ankle mortise causing a compression force on the medial ankle structures and traction to the lateral ankle (fig. 3A). Only two injuries occur:

Stage I. Traction fracture of lateral malleolus at or below level of ankle joint or rupture of talofibular ligaments.

Stage II. Near vertical fracture of medial malleolus. Figure 3B shows the transverse low fibular fracture and the vertical medial malleolar fracture [5, 6]. The low transverse fibular fracture establishes the force as that of supination with the resultant traction on the lateral ankle structures. Absence of a medial malleolar fracture (fig. 3C) denotes that this supination-adduction injury stopped at stage I.

距骨在踝穴内发生内收致使压缩暴力作用与踝关节内侧结构,并造成外踝牵拉(图. 3A)。此型损伤只有两度:

I度外踝牵拉骨折位于踝关节水平或其之下,或胫腓韧带断裂。

II度内踝近似垂直形骨折。图3B显示,腓骨低位横行骨折,内踝垂直骨折[5, 6]。腓骨低位横行骨折表明,旋后暴力导致踝关节外侧结构牵拉。未出现内踝骨折(图. 3C)表明这一旋后内收损伤停止于I度。

Fig. 3.-Supination-adduction injury. A, Representation of forces. B, Osseous injuries in sequence. C, Supination-adduction stage I. Transverse fracture of fibula indicates traction forces on lateral ankle.

图3旋后内收损伤。A 暴力表现B 骨损伤顺序C 旋后内收I度,腓骨横行骨折表明外踝存在牵拉暴力。

Supination-Lateral Rotation

旋后外旋型

In the supinated position, the medial ankle structures are not under tension. As the talus rotates laterally, unlike the pronation-lateral rotation injury, it first pushes the lateral malleolus posteriorly, rupturing the anterior tibiofibular hgament and causing a low spiral fracture of the fibula. The isolated spiral fracture of the fibula is the most common ankle fracture

(supination-lateral rotation stage II). If the talus rotates further posteriorly, it may push off a fragment of the posterior mahleolus. Subsequently, the medial structures fail, resulting in a medial malleolar fracture or deltoid ligament tear (fig. 4A). These injuries are summarized as follows:

在旋后状态下,踝关节内侧结构不处于紧张状态。距骨外旋时,与旋前外旋损伤不同。首先,将外踝推向后,致使胫腓前韧带断裂及腓骨低位螺旋骨折。腓骨的单纯螺旋骨折在此类骨折中最为常见(旋后外旋II度)。如果距骨进一步向后旋转,可挤压后踝骨折块发生分离。随后,发生内侧结构损伤,导致内踝骨折或三角韧带撕裂(图. 4A)。本型损伤可概括为: Stage I. Rupture of anterior tibiofibular ligament. Stage II. Spiral fracture of lateral malleolus.

Stage III. Rupture of posterior tibiofibular ligament or fracture of medial malleolus. The spiral fracture of the fibula starts low and runs from anterior to posterior. It may be steeply angled

and is best seen on the lateral view (fig. 4B) [5, 6]. I度胫腓前韧带断裂。 II度外踝螺旋骨折。

III度胫腓后韧带断裂或内踝骨折。侧位相上,腓骨螺旋骨折始于低位,从前向后。成角锐利(图. 4B) [5, 6]。

In both supination and pronation injuries, if the talus rotates, it rotates laterally. The type of injury to the fibula is distinct, however, allowing differentiation of the two mechanisms in most instances. In the supinated position, the medial ankle structures are not initially under tension. With lateral rotation, the talus moves posteriorly, pushing the lateral malleolus posteriorly, rupturing the anterior tibiofibular ligament and causing a low spiral fracture of the fibula (fig. 4B) [7].

A low fibular fracture, most clearly seen on the lateral view, hallmarks the spiral fracture of a supination-lateral rotation injury (fig. 4C). The presence of a medial malleolar fracture (fig. 4D), establishes this to be a complete injury, a supination-lateral rotation stage IV. Close scrutiny of the lateral projection frequently reveals a subtle avulsion of theposterior malleolus, verifying the tibiofibular ligament.

在旋前和旋后损伤中,如果距骨发生旋转,那一定是外旋。不同类型的腓骨骨折是不同地,因此,大多数情况下,这可以鉴别两种损伤机制。在旋后状态下,踝关节内侧结构开始时并不处于紧张状态。随着距骨外旋,距骨发生后移,将外踝推向后,胫腓前韧带发生断裂,导致腓骨低位螺旋骨折(图. 4B) [7]。

腓骨低位骨折大部分在侧位相上清晰可见,标志着螺旋骨折为旋后外旋损伤(图. 4C)。内踝骨折的出现(图. 4D)表明这是一个完全损伤,即旋后外旋IV度。对于侧位相的仔细观察,常可显示后踝存在轻度的撕脱骨折,胫腓韧带损伤。

Fig. 4.-Supination-lateral rotation injury. A, Representation of forces. B, Osseous injuries in

sequence. Talus moves posteriorly, rupturing anterior tibiofibular ligament and fracturing fibula at level of plafond. C and D, Supinationlateral rotation stage IV. Low spiral fibuar fracture distinguishes this trimalleolar fracture from pronation-lateral rotation injury.

图4旋后外旋损伤。A 暴力表现B 骨损伤顺序。距骨后移,胫腓前韧带断裂,胫骨穹窿水平腓骨骨折。C和D 旋后外旋IV度。腓骨低位螺旋骨折可将其造成三踝骨折与旋前外旋损伤区分开来。

Algorithm 分类法则

Using radiographic information alone, it is possible to assess the mechanism of injury and the stage at which each force arrested. The type of injury to the fibula is the crux of the issue: the presence or absence of a fibular fracture, its location in relation to the tibial plafond (tibial articular surface), and the direction of the fracture. From this information, the direction of force can be accurately determined. Evaluation of the medial malleolus or width of the medial side of the ankle mortise assesses the injury to the medial aspect of the ankle and is the second determining factor in establishing the type of force and the degree of completeness of the cycle of events. Finally, the posterior malleolus must be closely scrutinized, as avulsion of the posterior tibiofibular ligament may result in subtle avulsions of the tibia, as well as gross fractures. By using the flow chart (fig. 5), an orderly series of evaluations can be quickly made and a specific diagnosis which includes both bone and higamentous injuries is thus summarized for our clinical colleagues.

单纯通过X线片信息即可能评估损伤机制和每一损伤分期的暴力类型。腓骨的损伤类型是一个非常关键的问题:腓骨骨折与否,其相对于胫骨穹窿的位置(胫骨关节面),骨折方向。通过这一信息,可准确地确定暴力的方向。内踝或踝穴内侧间隙的评价可用以评估踝关节内侧面的损伤,这是确定暴力类型和环状结构完成程度第二个决定因素。最后,应对后踝进行仔细观察,除了严重的骨折,胫腓后韧带的撕脱骨折可导致轻度的胫骨撕脱骨折。通过应用流程图,可很快做出有序的评估和特定的诊断,这包括骨和韧带的损伤,从而为临床医生提供指导。

Fig. 5.-Lauge-Hansen classification of ankle fractures. Assessing position and direction of

fibular fracture distinguishes four types of injury mechanism. Second step, evaluating medial ankle joint and finally posterior malleolus, establishes completeness of injury.

图5 踝关节骨折的Lauge-Hansen分类。首先,通过评估腓骨骨折的位置和方向可区分四种损伤机制。第二部评估内踝关节间隙,最后是后踝情况,以确定损伤是否完全。

The usefulness of the algorithm in determining a precise diagnosis of the mechanism of injury and the specific ligamentous and bony injuries is seen in three examples. In case 1 , figure 6A demonstrates a high fibular fracture, indicating a pronation-lateral rotation injury. A posterior malleolar fracture is seen on the lateral projection (fig. 6B), establishing a complete (stage IV) injury. In the absence of a medial malleolar fracture, there must be a deltoid ligament tear (and, in retrospect, it is signaled by slight widening of the medial ankle mortise as seen on the anteroposterior projection).

在确定损伤机制的正确诊断和特定韧带和骨损伤时,这一诊断法则的实用性可在三个实例中见到。第一例,图6A显示腓骨高位骨折,表明为旋前外旋损伤。在侧位相上可见后踝骨折(图. 6B),表明其为完全损伤(IV度)。不存在内踝骨折时,应该有三角韧带撕裂(时候会想起来,在正位相上的内侧踝穴的轻度增宽即是其一个征象)。

Fig. 6.-A, High fibular fracture mdicates pronation-lateral rotation injury. B, Posterior malleolar fracture denotes complete injury. Therefore, in absence of medial malleolar fracture, deltoid hgament must be torn.

图6 A 高位腓骨骨折表明为旋前外旋损伤。B 后踝骨折表明为完全损伤。藉此,未出现内踝骨折,这表明三角韧带应该已经发生撕裂。

In case 2, the presence of a deltoid ligament tear indicates traction on the medial ankle structures as the talus moves within the ankle mortise (fig. 7A). In the absence of a low oblique

fibular fracture, the distinction between a pronationabduction injury and a pronation-lateral rotation force cannot be made. In this case, the entire fibula must be examned, because a fibular fracture resulting from pronationlateral rotation injury can occur anywhere from 6 cm above the tibial plafond to the fibular neck and will be missed by a routine radiographic examination of the ankle. This phenomenon was originally recognized by Maisonneuve in 1 840 [8] and is still known as a Maisonneuve fracture. Figure 7B illustrates the high fibular fracture in this case, establishing this as a pronation-lateral rotation stage Ill injury rather than a simple pronation-abduction stage I.

第二例,存在的三角韧带撕裂表明距骨在踝穴内的移动导致踝关节内侧结构的牵拉(图. 7A)。当出现腓骨低位斜形骨折时,不能区分是旋前外展暴力还是旋前外旋暴力。在这一病例中,应对整个腓骨进行检查,因为旋前外旋损伤所致的腓骨骨折可发生在从胫骨穹窿以上6cm以上到腓骨颈的任意位置,传统的踝关节X线片可造成漏诊。1840年,Maisonneuve[8]最早认识到了这一现象,因此还将这一骨折称为Maisonneuve骨折。图7B显示本例存在腓骨高位骨折,表明这是一例旋前外旋III度损伤,而不是简单的旋前外展I度损伤。

Fig. 7.-A, Absence of low fibular fracture and widening of medial ankle mortise indicate pronation injury. B, Additional films demonstrate high fibular fracture, indicating pronation-lateral rotation stage Ill injury.

图7A 未出现腓骨低位骨折,内侧踝穴增宽,这表明为旋前损伤。B 附加的X线片显示存在高位腓骨骨折,表明为旋前外旋III度损伤。

Fig. 8.-A, Posterior malleolar fracture in absence of fibular fracture mdicates pronatlon-abduction injury. B, Dospite normaljoint space, deltoid ligament must be injured.

图8A 后踝骨折但未出现腓骨骨折表明为旋前外展损伤。B 尽管关节间隙正常,但三角韧带应已发生损伤。

In case 3, an isolated posterior malleolar fracture, seen on a radiographic examination of the ankle (fig. 8), suggests a pronation injury since a supination-lateral rotation type of mechanism would first fracture the fibula at the level of the ankle mortise. Thus, one knows, despite absence of widening of the medial ankle joint radiographically, that the deltoid ligament is ruptured. Furthermore, as in case 2, one is committed to examine the entire fibula to establish the presence or absence of an interosseous membrane rupture. In this example, stress views of the ankle verified the deltoid ligament tear; there was no fibular fracture and the diagnosis of a pronation-abduction stage II injury could be made with assurance.

第三例,踝关节X线片表现为单纯后踝骨折(图. 8),这表明这是旋前损伤,因为旋后外旋型损伤机制会首先出现踝穴水平的腓骨骨折。因此,尽管在X线片上未出现内踝间隙的增宽,但三角韧带已经发生断裂。进而,要像第二例那样,进行腓骨的完整检查以证实是否存在骨间膜的断裂。这一例的踝关节应力位相证实三角韧带撕裂;无腓骨骨折,进而确保做出旋前外展II度损伤的诊断。

By using the algorithm based on the experimental work of Lauge-Hansen, the radiologist can quickly diagnose the mechanism of injury and the degree of completeness. Thus, higamentous tears are recognized as easily as the malleohar fractures. A more rational treatment of the injury can be instituted on the basis of accurate information afforded by the radiographic examination alone.

基于Lauge-Hansen的试验研究,这一法则的应用可使放射科医生很快对损伤机制和(骨和韧带的)完整性做出诊断。从而,可像踝部骨折一样很容易地认识到韧带的损伤。基于单纯X线检查所提供的准确信息即能对损伤制定出合理的治疗方法。

REFERENCES 参考文献

1 . Lauge N. Fractures of the ankle: analytic historic survey as the basis of new experimental, roentgenologic and clinical investigations. Arch Surg 1948;56:259-31 7

2. Lauge-Hansen N. Fractures of the ankle. II. Combined experimental- surgical and experimental-roentgenologic investigations. Arch Surg 1950:60:947-985

3. Lauge-Hansen N. Fractures of the ankle. III. Genetic roentgenologic diagnosis of fractures of the ankle. AJR 19:71 :456- 471

4. Lauge-Hansen N. Fractures of the ankle. IV. Clinical use of genetic roentgen diagnosis and genetic reduction. Arch Surg 1 952: : 488-500

5. Dabezies E, D’Ambrosia RD. Shoji H. Classification and treatment of ankle fractures.

Orthopedics 1 978;Sep/Oct : 365-373

6. Burwell HN, Charnley AD. Treatment of displaced fractures at the ankle by rigid internal fixation and early joint movement. J Bone Joint Surg 1965;47 : 634-660

7. Wilson JN. Watson Jones fractures and joint injuires. Edinburgh: Churchill-Livingstone, 1976: 1 091 -1 105

8. Maisonneuve JG. Recherches sur Ia fracture du p#{233}ronA#{r2-33}. chives g#{233}n#{23d3e}ralmes#{233}decine1.840:1 : 1 65, 433

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- haog.cn 版权所有 赣ICP备2024042798号-2

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务