搜索
您的当前位置:首页正文

Existence, uniqueness and efficiency of equilibrium in hedonic markets with multidimenstion

来源:好走旅游网
8002 lJu 42 ]CO.htam[ 1v0693.708:0viXraExistence,uniquenessandefficiencyofequilibriuminhedonicmarketswith

multidimensionaltypes.

IvarEkeland

CanadaResearchChairinMathematicalEconomics,UBC

Firstversion,April2005;thisversion,August2008

Abstract

Westudyequilibriuminhedonicmarkets,whenconsumersandsuppli-ershavereservationutilities,andtheutilityfunctionsareseparablewithrespecttoprice.Thereisoneindivisiblegood,whichcomesindifferentqualities;eachconsumerbuys0or1unit,andeachsuppliersells0or1unit.Consumertypes,suppliertypesandqualitiescanbeeitherdiscreteofcontinuous,inwhichcasetheyareallowedtobemultidimensional.Pricesplayadoublerole:theykeepsomeagentsoutofthemarket,andtheymatchtheremainingonespairwise.Wedefineequilibriumpricesandequilibriumdistributions,andweprovethatequilibriaexist,weinvesti-gatetowhatextendequilibriumpricesanddistributionsareunique,andweprovethatequilibriaareefficient.Intheparticularcasewhenthereisacontinuumoftypes,andageneralizedSpence-Mirrleesconditionissatisfied,weprovetheexistenceofapureequilibrium,wheredemanddis-tributionsareinfactdemandfunctions,andweshowtowhatextentitisunique.Theproofsrelyonconvexanalysis,andcarehasbeengiventoillustratethetheorywithexamples.

1

Introduction.

1.1

Mainresults.

Inthispaper,weshowtheexistenceanduniquenessofequilibriuminahedonicmarket,andwegiveuniquenessresults.Themainfeaturesofourmodelareasfollows:

•Thereisasingle,indivisible,goodinthemarket,anditcomesindifferentqualitiesz

1

•Consumersandproducersareprice-takersandutility-maximizers.Theyarecharacterizedbythevaluesofsomevariables;eachsetofvaluesiscalleda(multidimensional)type.

•Consumersbuyatmostoneunitofthegood,andtheybuynoneiftheirreservationutilityisnotmet;producerssupplyatmostoneunitofthegood,andtheysupplynoneiftheirreservationutilityisnotmet.Inotherwords,agentsalwayshavetheoptionofstayingoutofthemarket.•Theutilitiesofconsumersandofproducersarequasi-linearwithrespecttoprice:theutilityconsumerswithtypexderivefrombuyingoneunitofqualityzatpricep(z)isu(x,z)−p(z),andtheutilityproducerswithtypeyderivefromsellingoneunitofqualityzatpricep(z)isp(z)−v(y,z)Ourresultsarevalidinthediscretecaseandinthecontinuouscase.Weshowthatthereisa(nonlinear)pricesystemp(z)suchthat,foreveryqualityz,thenumber(ortheaggregatemass)ofconsumerswhodemandzisequaltothenumber(ortheaggregatemass)ofsupplierswhoproducez.Inaddition,agentswhoarestayingoutofthemarketaredoingsobecausebyenteringtheywouldlowertheirutility.Inotherwordsthispricesystemexactlymatchesasubsetofconsumerswithasubsetofproducers,andtheremainingconsumersorproducersarepricedoutofthemarket.Thisiscalledanequilibriumprice,andtheresultingallocationofqualitiesiscalledanequilibriumallocation.Anexampleisgiveninsection4.4,andthereadermayproceedtheredirectly.Weshouldstress,however,thatweproveexistenceinfullgenerality,beyondtheone-dimensionalsituationdescribedinthatexample.

Everypricesystemp(z)createsamatchingbetweenconsumersandproduc-ers:foreveryunittraded,thereisapairconsistingofaconsumerwhobuysitandaproducerwhosellsit.Whensummingtheirutilities,thepriceofthetradeditemcancelsout,sothattheresultingutilityofthepairisindependentofthepricesystem.Unmatchedconsumersandproducers(singles)gettheirreservationutility.Itisthenmeaningfultotakethesocialplanner’spointofview,andtoaskforamatchingbetweenconsumersandproducerswhichwillmaximizeaggregateutility,wheretheutilityofmatchedpairsisthemaximumutilitytheycangetbytrading,andtheutilityofunmatchedagentsistheirreservationutility.Wewillshowthatthesolutionofthisproblemcoincideswiththeequilibriummatching.Thisimpliesthateveryequilibriumisefficient.Aninterestingfeatureofequilibriumpricingisthat,eventoughalltechno-logicallyfeasiblequalitiesarepriced,notallofthemwillbetradedinequilib-rium.Foreachnon-tradedquality,thereisanon-emptybid-askrange:allpriceswhichfallwithinthatrangeareequilibriumprices,thatis,theywillnotlurecustomersorsuppliersawayfromtradedqualities.Thismeansthatequilibriumpricescannotbeuniquelydefinedonnon-tradedqualities.Ontheotherhand,theyareuniquelydefinedontradedqualities.Thereisacorrespondingdegreeofuniquenessfortheequilibriumallocation.

Themaindrawbackofourmodelistheassumptionthatutilitiesarequasi-linear.Itisquitearestriction,fromtheeconomicpointofview,sinceitmeans

2

thatthemarginalutilityofmoneyisconstant,butourproofseemstorequireitinanessentialway.Ontheotherhand,italsoenablesustoprovesomeuniquenessresults,whichareprobablynottobeexpectedinthemoregeneralcase.

1.2Thelitterature.

Thispaperinheritsfromtwotraditionsineconomics.Ontheonehand,itcanbeseenasacontributiontotheresearchprogramonhedonicpricingthatwasoutlinedbyShervinRoseninhisseminalpaper[16].Theideaofdefiningagoodasabundleofattributes(originatingperhapswithHouthakker[9],anddevelopedbyLancaster[11],Becker[1]andMuth[12]),providesasystematicframeworkfortheeconomicanalysisofthesupplyanddemandforquality.Themaindirectionofinvestigation,however,hasbeentowardseconometricissues,suchastheconstructionofpriceindicesnetofchangesinquality;seeforinstancetheseminalworkofCourt[3]andthebook[8]).TheidentificationofhedonicmodelsraisesspecificquestionswhichhavebeenfirstdiscussedbyRosen[16],andmostrecentlybyEkeland,HeckmanandNesheim[4].Theoreticalquestion,suchastheexistenceandcharacterizationofequilibria,haveattractedlessat-tention.ThepapersbyRosen[16]andlaterMussaandRosen[14]studytheone-dimensionalsituation,thatis,thecasewhenagentsarefullycharacterizedbythevalueofasingleparameter.ThemultidimensionalsituationhasbeeninvestigatedbyRochetandChon´e[15],butitdealswithmonopolypricing.Theissueofequilibriumpricinginthemultidimensionalsituation,hadtomyknowledgenotbeenadresseduptonow(nor,forthatmatter,hastheissueofoligopolypricing).

OneofRosen’smainachievementhasbeentorecognizehedonicpricingasnonlinear,againsttheprevailingtraditionineconometricusage.Asnotedin[16],abuyercanforcepricestobelinearwithrespecttoqualityifcertaintypesofarbitrageareallowed.Inthepresentpaper,buyersandsellersarerestrictedtotradingoneunitofasinglequality,andthereisnosecond-handmarket,sothiskindofarbitrageisunavailable,andpriceswillbeinherentlynonlinear.Thiswouldnotbethecaseifconsumersandproducerswereallowedtobuyandsellseveralqualitiessimultaneously.

Ontheotherhand,thispaperalsobelongstothetraditionofassignmentproblems.Thistraditionhasseveralstrands,oneofwhichoriginateswithKoop-mansandBeckmann[10],andtheotherwithShapleyandShubik[17].WerefertothepapersbyGretzki,OstroyandZame[6]and[7],andto[13]formorerecentwork.Inthisliterature,producersarenotfreetochoosethequalitytheysell:eachqualityisassociatedwithasingleproducer,whocanproducethatoneandnotanyotherone.TheShapley-Shubikmodel,forinstance,describesamarketforhouses.Thereareacertainnumberofsellers,eachoneisendowedwithahouse,andacertainnumberofbuyers.Nosellercansellahouseotherthanhisown,butabuyercanbuyanyhouse.Thisisincontrastwiththesituationinthepresentpaper,wherebothbuyersandsellersarefreetochoosethequalitytheybuyorsell.

3

1.3Structureofthepaper

Section2describesthemathematicalmodelandthebasicassumptions.Aswementionedearlier,wedonotrequirethatthedistributionoftypesbecontinuous,northatthenumberofconsumersequalsthenumberofproducers.Mathemat-icallyspeaking,thereisapositivemeasureµonthesetofconsumertypesX,andameasureνonthesetofproducertypesY,bothµandνcanhaveatoms,andtypicallyµ(X)=ν(Y).Thesefeatures,althoughveryappealingfromthepointofviewofeconomicmodelling,introducegreatcomplicationsinthemathematicaltreatment.Inearlierwork[5],theauthorhasgivenastreamlinedproofintheparticularcasewhenµandνarenon-atomic,µ(X)=ν(Y)andanadditionalsortingassumptiononutilitiesissatisfied(extendingtomultidimen-sionaltypestheclassicalSpence-Mirrleessingle-crossingassumption),sothatallagentswiththesametypedothesamething.BesidethefactthatitdoesnotapplywhenXorYarefinite,suchamodeldoesnotcaptureoneoftheessentialroleofprices,whichservenotonlytomatchconsumersandproducerswhichenterthemarket(theremustnecessarilybeanequalnumberofboth)butalsotokeepoutofthemarketenoughagentssothatmatchingbecomespossible.Thelatterfunctionisanessentialfocusofthepresentpaper.

Inourmodel,thereisasingleindivisiblegood,consumersarerestrictedtobuyingoneorzerounit,andproducersarerestrictedtosupplyoneorzerounit.Thepriceisanonlinearfunctionp(z)ofthequalityz.Itisanequilibriumpriceifthemarketforeveryqualityclears.Thisimpliesthatthenumberofconsumerswhotradeisequaltothenumberofsupplierswhotrade.Theremaining,non-trading,agents,arekeptoutofthemarketbythepricesystem,whichiseithertoohigh(forconsumers)ortoolow(forproducer)toallowthemtomakemorethantheirreservationutility.

Itisimportanttonotethatinequilibriumconsumers(orproducers)whichhavethesametypemaynotbedoingthesamething.Thiswilltypicallyoccurwhenutilitymaximisationdoesnotresultinasinglequalitybeingselected.Tobeprecise,givenanequilibriumpricep(z),consumersoftypexmaximizeu(x,z)−p(z)withrespecttoz.Butthereisnoreasonwhythereshouldbeauniqueoptimalquality:evenifweassumedu(x,z)tobestrictlyconcavewithrespecttoz,thepricep(z)typicallyisnonlinearwithrespecttoz,andnoconclusioncanbederivedaboutuniqueness.

Ifp(z)isanequilibriumprice,andifthereisanon-trivialsubsetD(x)⊂Zsuchthatanyz∈D(x)isautilitymazimizerforx,therewillbeacertain

α

equilibriumprobabilityPxonD(x).Thismeansthat,givenA⊂D(x),the

α

numberPx[A]∈[0,1]istheproportionofagentsoftypexwhosedemandslie

β

foreveryproducerinA.Similarly,therewillbeanequilibriumprobabilityPy

y,andtheresultingdemandandsupplyforeveryqualityzwillbalanceout.Aformaldefinitionisgiveninsection3.Inotherwords,inequilibrium,wecannottellwhichagentofagiventypedoeswhat,butwecantellhowmanyofthemdothisorthat.

Themainresultsofthepaper,togetherwiththedefinitionofequilibrium,arestatedinsection3:equilibriaexist,equilibriumpricesarenotunique,there

4

isauniqueequilibriumallocation,anditisefficient(Paretooptimal).ProofsaredeferredtoAppendicesCandD.Theseproofscombinetwomathematicalingredients,theHahn-Banachseparationtheoremontheonehand,anddualitytechniqueswhichextendtheclassicalFencheldualityforconvexfunctions,andwhichhavebeendevelopedinthecontextofoptimaltransportation(see[18]forarecentsurvey).Everythingreliesinstudyingacertainoptimizationproblem(33),whichisnovel.

Section4givesadditionalassumptionswhichensurethatallagentsofthesametypedothesamethinginequilibrium:µandνshouldbenon-atomic,andconditions(9)and(10)shouldbesatisfied.Theseconditionsextendtomultidimensionaltypestheclassicalsingle-crossingassumptionofSpenceandMirrlees.Theresultingequilibriaarecalledpure,inreferencetopureandmixedequilibriaingametheory.Notehoweverthat,eveninthiscase,onecannotfullydeterminethebehaviourofagentsinequilibrium:ifconsumersoftypexareindifferentbetweenenteringthemarketornot(eitherdecisiongivingthemtheirreservationutility),then,evenwiththeseadditionalassumptions,wecannotsaywhichoneswillstayoutandwhichoneswillcomein.Theequilibriumrelationswillonlydeterminetheproportionofeach.

Subsection4.4describesanexplicitexample.Itisstrictlyone-dimensional(typesandqualitiesarerealnumbers),whichmakescalculationspossible,andacompletedescriptionoftheequilibriumisprovided.Unfortunately,themethodusesdoesnotextendtomultidimensionaltypes.

AppendixAgivesthemathematicalresultsonu-convexandv-concaveanal-ysiswhichwillbeinconstantuseinthetext.AppendixBgivesgeneralmathe-maticalnotations,andreferencesaboutRadonmeasures.AppendicesCandDcontainproofs.

2

2.1

Themodel.

Standingassumptions.

LetX⊂Rd1,Y⊂Rd2,andZ0⊂Rd3becompactsubsets.Wearegivennon-negativefinitemeasuresµonXandνonY.Theyareallowedtohavepointmasses.

Typically,wewillhaveµ(X)=ν(Y).

LetΩ1beaneighbourhoodofX×Z0inRd1+d3,andΩ2beaneighbourhood

d2+d3

.Wearegivencontinuousfunctionsu:Ω1→RandofY×Z0inR

v:Ω2→R.Itisassumedthatuisdifferentiablewithrespecttox,andthatthederivative:󰀎󰀌

∂u

Dxu=

∂xd1iscontinuouswithrespectto(x,z).Similarlyitisassumedthatvisdifferen-tiablewithrespecttoy,andthatthederivativeDyviscontinuouswithrespectto(y,z).

5

NotethatX,Yand/orZ0areallowedtobefinite.IfXisfinite,theas-sumptiononuissatisfied.IfYisfinite,theassumptiononvissatisfied.

2.2Bidandaskprices

Wearedescribingthemarketforaqualitygood:itisindivisible,andunitsdifferbytheircharacteristics(z1,...,zd3)∈Z0.Thebundlez=(z1,...,zd3)willbereferredtoasa(multidimensional)quality.SoZ0isthesetofalltechnologi-callyfeasiblequalities;itistobeexpectedthattheywillnotallbetradedinequilibrium.

PointsinXrepresentconsumertypes,pointsinYrepresentproducertypes.IfXisfinite,thenµ(x)isthenumberofconsumersoftypex.IfYisfinite,thenν(y)isthenumberofproducersoftypey.IfXisinfinite,thenµisthedistributionoftypesintheconsumerpopulation,andthesameinterpretationholdsfor(Y,ν).

Eachconsumerbuyszerooroneunit,andeachsuppliersellszerooroneunit.Thereisnosecond-handtrade.

Forthetimebeing,wedefineapricesystemtobeacontinuousmapp:Z0→R.Thisdefinitionwillbemodifiedinamoment,asthesetZ0willbeextendedtoalargersetZ.Typically,pricingisnonlinearwithrespecttothecharacteristics.Oncethepricesystemisannounced,agentsmaketheirdecisionsaccordingtothefollowingrules:

•Consumersoftypexmaximizeu(x,z)−p(z)overZ0.Ifthevalueofthatmaximumisstrictlypositive,theconsumerentersthemarketandbuysoneunitofthemaximizingqualityz.Ifthereareseveralmaximizingqualities,heisindifferentbetweenthem,andthewayhechooseswhichonetobuyisnotspecifiedatthisstage.Ifthevalueofthemaximumis0,heisindifferentbetweenstayingoutofthemarket,andenteringittobuyoneunitofthemaximizingquality.Again,thewayhechoosesisnotspecifiedatthisstage.

•Producersoftypeymaximizep(z)−v(y,z)overZ0.Ifthevalueofthatmaximumisstrictlypositive,theproducerentersthemarketandsellsoneunitofthemaximizingqualityz.Ifthereareseveralmaximizingqualities,heisindifferentbetweenthem.Ifthevalueofthemaximumis0,heisindifferentbetweenstayingoutofthemarket,andenteringittoselloneunitofthemaximizingquality.

Tomodelthisprocedurebyastraigthforwardmaximization,weintroducetwoextrapoints∅d∈/Z0and∅s∈/Z0,with∅d=∅s,andweextendutilitiesandpricesasfollows:

p(∅d)=u(x,∅d)=0∀x∈Xp(∅s)=v(y,∅s)=0∀y∈Yu(x,∅s)=−1,v(y,∅d)=1

6

(1)(2)(3)

Thesetofpossibledecisionsforagentsisnow

Z=Z0∪{∅d}∪{∅s}

sothat:

max{u(x,z)−p(z)|z∈Z}≥u(x,∅d)−p(∅d)=0max{p(z)−v(y,z)|z∈Z}≥p(∅s)−v(y,∅s)=0

andtheprocedurewejustdescribedamountstomaximizingoverZinsteadofZ0.Therelations(1)to(3)implythatconsumerswillneverchoose∅s(itisalwaysbettertochoose∅d),andproducerswillneverchoose∅d(itisalwaysbettertochoose∅s).Soourmodeldoescapturetheintendedbehaviour.

Notethatwehavenormalizedreservationutilitiesto0.Thisdoesnotcauseanylossofgenerality.Thebehaviourofconsumers,forinstance,isfullyspecifiedbyu(x,z)andu¯(x),thelatterbeingthereservationutility,andwegetthesamebehaviourbyreplacingu(x,z)byu(x,z)−u¯(x)andu¯(x)by0,theonly

1

restrictionbeingthatwewouldrequireu¯tobeC,topreservetheregularitypropertiesofu.

Normalizingreservationutilitiesto0,wefindthatu(x,z)isthebidpriceforqualityzbyconsumersoftypex,thatis,thehighestpricethattheyarewillingtopayforthatquality.Similarly,v(y,z)istheaskingpriceforqualityzbyproducersoftypey,thatis,thelowestpricetheyarewillingtoacceptforsupplyingthatquality.Foragivenqualityz∈Z,itisnaturaltoconsiderthehighestbidpricefromconsumersandthelowestaskpricefromproducers:Definition1Thehighestbidpriceb:Z→Risgivenby:

b(z)=maxu(x,z)

x

andthelowestaskpricea:Z→Risgivenby:

a(z)=minv(y,z)

y

Notethatb(∅d)=a(∅s)=0andthata(∅d)=−b(∅s)=1.

Itfollowsfromtheirdefinitionsthatbisu-convexandaisv-concave.More

precisely,wehaveb(z)=0♯xanda(z)=0ywhere0xand0ydenotethemapsx→0andy→0onXandY.Conversely,wehave0=maxz{u(x,z)−b(z)}and0=minz{v(y,z)−a(z)},sothatb♯(x)=0anda♭(y)=0.

Notethatifthepricesystemissuchthatp(z)>b(z)forsomequalityz,thentherewillbenobuyersforthisquality,andsoitcannotbetradedatthatprice.Similarly,ifp(z)Proposition2(No-tradeequilibrium)Ifa(z)>b(z)everywhere,thenallconsumersandallproducersstayoutofthemarket.

7

2.3Demandandsupply

Fromnowon,apricesystemwillbeacontinuousmapp:Z→Rsuchthatp(∅d)=p(∅s)=0.

Givenapricesystemp,themapp:Z→RiscontinuousandthesetZiscompact,sothatthefunctionsu(x,z)−p(z)andp(z)−v(y,z)attaintheirmaximumonZ.

Definition3Givenapricesystemp,wedefine:

D(x)=argmax{u(x,z)−p(z)|z∈Z}S(y)=argmin{v(y,z)−p(z)|z∈Z}

Botharecompactandnon-emptysubsetsofZ.WeshallrefertoD(x)asthedemandoftypexconsumers,andtoS(y)asthesupplyoftypeyproducers.Itfollowsfromthedefinitionsthatifaconsumeroftypexisoutofthemarket,thenwemusthave∅d∈D(x).IfthereisnootherpointinD(x),thenallconsumersofthesametypestayoutofthemarket.If,ontheotherhand,D(x)containssomepointz∈Z0,thenallconsumersoftypexareindifferentbetweenstayingoutorbuyingqualityz,andwemayexpectthatsomeofthemactuallybuyqualityzinsteadofstayingout.Thisremarkwillbeatthecoreofourequilibriumanalysis.Ofcourse,thesameobservationisvalidforproducers.ThefollowingresultclarifiestherelationbetweenD(x)andS(y)ontheonehand,andthesub-andsupergradients∂p♯(x)and∂p♭(y)ontheother.Recallthat:

p♯(x)=max{u(x,z)−p(z)|z∈Z}p♭(y)=min{v(y,z)−p(z)|z∈Z}

Proposition4WehaveD(x)⊂∂p♯(x)andS(y)⊂∂p♭(y).Moreprecisely:

D(x)=󰀏z∈∂p♯(x)|p(z)=p♯♯S(y)=󰀒(z)

z∈∂p♭(y)|p(z)=p♭♭

(z)󰀑

󰀔

Proof.Thepointx∈Xbeingfixed,considerthefunctionsϕ:Z→Randψ:Z→Rdefinedbyϕ(z)=u(x,z)−p(z)andψ(z)=u(x,z)−p♯♯(z).Thesubgradient∂p♯(x)isthesetofpointszwhereψattainsitsmaximum(seeappendixA),whileD(x)isthesetofpointszwhereϕattainsitsmaximum.Butψ≥ϕandmaxψ=maxϕ.Theresultfollows.

2.4Admissiblepricesystems

Wehaveseenthat,ifa(z)>b(z)everywhere,thereisano-tradeequilibrium.Weareconcernedwiththemoreinterestingcasewhena(z)≤b(z)forsomez.Definition6Qualityz∈Zismarketableifa(z)≤b(z).Thesetofmar-ketablequalitieswillbedenotedbyZ1:

Z1={z∈Z|a(z)≤b(z)}

={z∈Z|∃x,∃y:v(y,z)≤u(x,z)}

Notethatstayingoutisnotamarketableoption:a(∅d)>b(∅d)anda(∅s)>b(∅s).Asmentionedearlier,thismeansthatconsumerswillneverchoose∅sandthatsupplierswillneverchoose∅d.Wehavethereforetheinclusions:

Z1⊂Z0󰀅ZIfaqualityzisnotmarketable,onewillneverbeabletofindabuyer/sellerpairthattradez.Ifaqualityzismarketable,thereisnosenseinsettingitspricetobehigherthanb(z)(therewouldbenobuyers),orlowerthana(z)(therewouldbenosellers).Hence:

Definition7Apricesystemp:Z→Rwillbecalledadmissibleif:

∀z∈Z1,a(z)≤p(z)≤b(z)

Letpbeanadmissiblepricesystem,sothata(z)≤p(z)≤b(z).Recallthatp♯(x)istheindirectutilityoftypexconsumers,andthat−p♭(y)istheindirectutilityoftypeyproducers.Takingconjugates,weget:

∀x∈X,0≤p♯(x)∀y∈Y,

0≥p♭(y)

whichmeansthatallconsumersandproducersachieveatleasttheirreservationutility.

3

3.1

Equilibrium

Demanddistributionandsupplydistribution

Assumeapricesystemp:Z→Risgiven.LetD(x)andS(y)betheassociateddemandandsupply.Recall.thattheirgraphsarecompactsets.

WerefertoAppendixBfornotationsanddefinitionsconcerningRadonmeasuresandprobabilities.

Definition8AdemanddistributionassociatedwithpisapositivemeasureαX×ZonX×Zsuchthat:

9

•αX×ZiscarriedbythegraphofD•itsmarginalαXisequaltoµ

Similarly,asupplydistributionassociatedwithpisapositivemeasureβY×ZonY×Zsuchthat:

•βY×ZiscarriedbythegraphofS•itsmarginalβYisequaltoν

αβ

TheconditionalprobabilitiesPxandPythenarecarriedbyD(x)and

αβ

S(y)respectively.GivenA⊂Z,thenumbersPx[A]andPy[A]arereadilyinterpretedastheprobabilitythatconsumersoftypexdemandsomez∈Aandtheprobabilitythatproducersoftypeysupplysomez∈A.

IfS(y)isasingleton,sothatthesupplyoftypeyproducersisuniquely

β

defined,thenPyreducestoaDiracmass:

β

S(y)={s(y)}=⇒Py=δs(y)

andsimilarlyforconsumers.

3.2Definitionofequilibrium

Definition9Anequilibriumisatriplet(p,αX×Z,βY×Z),wherepisanad-missiblepricesystemandαX×ZandβY×Zaredemandandsupplydistributions

associatedwithp,suchthat:

αZ0=βZ0ByαZ0andβZ0wedenotethemarginalsofαX×ZandβY×ZonZ0.Letuswritedownexplicitlyalltheconditionson(p,α,β)impliedbythisdefinition:1.p:Z→Riscontinuous,andp(z)∈[a(z),b(z)]whenevera(z)≤b(z)2.themarginalαXisequaltoµ

α

3.theconditionalprobabilityPxiscarriedbyD(x)

4.themarginalβYisequaltoν

β5.theconditionalprobabilityPyiscarriedbyS(y)

6.themarginalsαZandβZcoincideonZ0:

αZ[A]=βZ[A]

∀A⊂Z0

10

Theinterpretationisasfollows.Givenp,consumersoftypexmaximizetheirutility,therebydefiningtheirindividualdemandsetD(x).Ifthatsetisa

α

singleton,D(x)={d(x)},theprobabilityPxmustbetheDiracmasscarriedbyd(x),andallconsumersoftypexdothesamething:theystayoutofthemarketifd(x)=∅d,andtheybuyz∈Z0ifd(x)=z.IfD(x)containsseveralpoints,thenconsumersoftypexareindifferentamongthesealternatives,andtheyalldodifferentthings.ForanyBorelsubsetA⊂D(x),theprobabilityαPx[A]givesustheproportionofconsumersoftypexwhochoosesomez∈Ainequilibrium.

Similarconsiderationsholdforsuppliers.Condition6juststatesthatmar-ketsclearinequilibrium:foreveryqualityz∈Z0,thenumber(ortheaggregatemass)ofbuyersequalsthenumber(ortheaggregatemass)ofsuppliers.Notethatthisnumber(orthismass)mightbezero,meaningthatthisparticularqualityisnottraded.Thiswillhappen,forinstance,ifa(z)>b(z),sothatqualityzisnotmarketable.Itfollowsthat,inequilibrium,demandandsupplyarecarriedbyZ1,thesetofmarketablequalities:

αZ[Z1]=αZ[Z0]=βZ[Z0]=βZ[Z1]

Thenumber(ortheaggregatemass)ofconsumerswhostayoutofthemarketisαZ({∅d}),andthenumber(ortheaggregatemass)ofproducerswhostayoutofthemarketisβZ({∅s}).Aswementionedseveraltimesbefore,wemusthaveαZ({∅s})=0andβZ({∅d})=0.

3.3Mainresults

Webeginbyanexistenceresult:

Theorem10(Existence)Underthestandingassumptions,thereisanequi-librium.

Asnotedabove,ifthesetZ1ofmarketablequalitiesisempty,thereisanequilibrium,namelytheno-tradeequilibrium,anditisunique.FromnowonweassumeZ1=∅.TheExistenceTheoremwillbeprovedinsectionC.

Thereisnouniquenessofequilibriumprices.Forinstance,ifaqualityz∈Z0isnon-marketable,itspricep(z)canbespecifiedarbitrarily.Moregenerally,insectionCwewillprovethefollowing(seeProposition37):

Theorem11(Non-uniquenessofequilibriumprices)Thesetofallequi-libriumpricespisconvexandnon-empty.Ifp:Z→Risanequilibriumprice,thensoiseveryq:Z→Rwhichisadmissible,continuous,andsatisfies:

p♯♯(z)≤q(z)≤p♭♭(z)

∀z∈Z

(4)

Forα-andβ-almosteveryqualityzwhichistradedinequilibrium,wehavep♯♯(z)=p(z)=p♭♭(z).

11

Notethatqisalsorequiredtobeadmissible,sothatinadditionto(4)ithastosatisfytheinequality:

a≤q≤b(5)Theeconomicinterpretationisasfollows.If(p,αX×Z,βY×Z)isanequilib-rium,therewillbequalitieszwhicharemarketable,butwhicharenottraded

inequilibrium,becauseeverysuppliertypeyandeveryconsumertypexpreferssomeotherquality,whichmeansthatthepricep(z)istoolowtointerestsup-pliers,andtoohightointerestconsumers.Formulas(4)and(5)givetherangeofpricesforwhichthissituationwillpersist.Aslongasthepricep(z)staysintheopeninterval

]max󰀏a(z),p♯♯(z)󰀑,min󰀒b(z),p♭♭

(z)󰀔[

thequalityzwillnotbetraded.Inotherwords,thepriceofnon-tradedqualitiescanbechanged,withinacertainrange,withoutaffectingαX×ZorβY×Z,thatis,theequilibriumdistributionofconsumersandsuppliers.Thisisthemajorsourceofnon-uniquenessinequilibriumprices.Ontheotherhand,ifaqualityzistradedinequilibrium,onecannotchangethepricep(z)withoutaffectingαX×ZandβY×Z,thatis,withoutdestroyingthegivenequilibrium.

Theequilibriumpricepisnotunique,butthefollowingresultshowsthatthedemandandsupplymapsD(x)andS(y)almostare:

Theorem12(Quasi-uniquenessofequilibriumallocations)Letand󰀂p2,α2

X×Z,β2Y×Z󰀁󰀂p1,α1X×Z,β1

Y×Zbetwoequilibria.DenotebyD1(x),D2(x)andS1(y),S2(y)

󰀁thecorrespondingdemandandsupplymaps.DenotebyPsupply.x1,Py1andPThen:

x2,P2

conditionalprobabilitiesofdemandandythecorrespondingPx2[D1(x)]=Px1[D1(x)]=1forµ-a.e.xPy2[S1(y)]=Py1[S1(y)]=1forν-a.e.y

Inotherwords,anyzwhichtypesxdemandsinthesecondequilibrium,

whenpricesarep2,mustbelongtothedemandsetofxwhenpricesarep1(eventhoughxmightnotdemanditinthesecondequilibrium)

Corollary13Ifthedemandofconsumersoftypexissingle-valuedinthefirstequilibrium,D1(x)={d1(x)},thend1(x)∈D2(x).Iftheirdemandissingle-valuedinthesecondequilibriumaswell,thend1(x)=d2(x).

Proof.WehavePx2[d1(x)]=1=Px2

[D2(x)].Sod1(x)mustbelongtoD2(x),andtheremaindermusthavezeroprobability:

Px2[D2(x)󰀄{d1(x)}]=0

Proof.SinceD1(x)={∅d},wemusthave∅d∈D2(x).Assumeconsumersoftypexareactiveinthesecondequilibrium.Wemusthaveu(x,z)−p(z)>0forallz∈D2(x),includingz=∅d.Sinceu(x,∅d)=p(∅d)=0,thisisacontradiction.

Thehighestbidpriceforzisb=maxxu(x),andthelowestaskpriceisa=minyv(y).

IfbSupposeb≥a.Apricepisadmissibleifa≤p≤b.Set:

I1(p)={x∈X|u(x)p}

anddefineJ1(p),J2(p),J3(p)inasimilarwayforproducers.Anequilibriumisaset(p,α,β)suchthat

•α=(αx),x∈X,whereeachαxisaprobabilityon{z}∪{∅d}•β=(βy),y∈Y,whereeachβyisaprobabilityon{z}∪{∅s}

󰀊󰀊

α(z)=•yβy(z)xx

Letustranslatethis.Ifx∈I1(p),thenconsumersoftypexstayoutofthe

market,sothatαx(z)=0.Ifx∈I3(p),thenconsumersoftypexbuyz,sothatαx(z)=1.Ifi∈I2(p),thenαx(z)istheproportionofconsumersoftypexwhobuyzinequilibrium.Denoteby#[A]thenumberofelementsinafinitesetA.Theequilibriumconditionimpliesthat:

#[I3(p)]≤#[J2(p)∪J3(p)]#[J3(p)]≤#[I2(p)∪I3(p)]

(7)(8)

Conversely,ifthesetwoinequalitiesaresatisfied,wewillalwaysbeabletofindnumbersαxandβysuchthat0≤αx≤1,αx=0ifx∈I1(p)andαx=1ifx∈I3(p),withcorrespondingconstraintsfortheβy.So,inthatparticularcase,theequilibriumconditionsboildowntotheinequalities(7)and(8).

Notethatthereisnouniquenessoftheequilibriumpricep.Ifforinstanceux¯andvy>ux¯,thenanyprice¯>vy¯,withux󰀃󰀃

0≤αx(z)≤1,0≤βy(z)≤1,αx(z)=βy(z)

x

y

(p,α,β)isanequilibriumallocation.

3.5Example2:moreonuniqueness

WegiveanexampletoclarifytheuniquenessstatementinTheorem12.There

arethreegoods,z1,z2,z3,twoconsumersx1,x2,threeproducersy1,y2,y3.The

14

utilityfunctionsare:

u(x1,z1)=2,u(x1,z2)=1,u(x1,z3)=0.1u(x2,z1)=3,u(x2,z2)=2,u(x2,z3)=0.1

andthecostfunctionsare:

v(y1,z1)=0,v(y1,z2)=5,v(y1,z3)=5v(y2,z1)=5,v(y2,z2)=0,v(y2,z3)=5v(y3,z1)=5,v(y1,z2)=5,v(y1,z3)=0

Itiseasytocheckthattherearetwoequilibria:

1.y1producesz1,y2producesz2,y3producesnothing;x1choosesz1,x2

choosesz2;pricesarep(z1)=1,p(z2)=0,p(z3)=02.y1producesz1,y2producesz2,y3producesnothing;x1choosesz2,x2

choosesz1;pricesarep(z1)=1.9,p(z2)=0.9,p(z3)=0Thedemandsetofx1is{z1,z2}:=D1(x1)inthefirstequilibriumand{z1,z2,z3}:=D2(x1)inthesecond.Thedemanddistribution,ontheother

1

(z)=δz1(Diracmassatz1)inthefirstequilibrium(simplyexpress-hand,isPx1

2

(z)=ingthefactthatx1choosesz1andnothingelseinherdemandset)andPx1

δz2inthesecond.Theorem12thenstatesthatδz2[D1(x1)]=δz1[D1(x1)]=1,whichsimplyexpressesthefactthatbothz1andz2belongtoD1(x1).

Noteforinstancethatthesocialutilityisthesameforbothequilibria,namely4:

1.Inthefirstone:

u(x1,z1)−v(y1,z1)+u(x2,z2)−v(y2,z2)=2−0+2−0=4

2.Inthesecondone:

u(x1,z2)−v(y2,z2)+u(x2,z1)−v(y1,z1)=1−0+3−0=4

Thisisageneralfact:thesocialutilityisthesameatallequilibria.Indeed,equilibriumpricesarefoundbymaximizingtheright-handsideof(6):itmaybeachievedatdifferentp1andp2,butthevalueofthemaximumisthesame.

4

4.1

Pureequilibrium.

Definition

α

Inequilibrium,consumersoftypexdemandqualityzwithprobabilityPx(z),

β

andsuppliersoftypeysupplyqualityzwithprobabilityPy(z).Theequilibriumispureifallagentsofthesametypewhoareinthemarketatthesametimearedoingthesamething(buyingorsellingthesamequality),sothattheseprobabilitiesareDiracmasses.Formally:

15

Definition16Anequilibrium(p,αX×Z,βY×Z)ispureif:

•forµ-almosteveryx,thesetD(x)∩Z0containsatmostonepoint•forν-almosteveryy,thesetS(y)∩Z0containsatmostonepointDenotebyXpthesetofactiveorindifferentconsumers.If(p,αX×Z,βY×Z)isapureequilibrium,thereisaBorelmapd:Xp→Z0withd(x)∈D(x)suchthat,forµ-almosteveryx,oneandonlyoneofthefollowingholds:•eitherconsumersoftypexareinactive,sothatD(x)=∅d•orconsumersoftypexareindifferent;thenD(x)=∅d∪{d(x)}•orconsumersoftypexareactive;thenD(x)={d(x)}

Wecanthenrewritethedefinitionofequilibriumdirectlyintermsofsandd.

Definition17Apureequilibriumisatriplet(p,d,s)where:

󰀏󰀑

1.disaBorelmapfromthesetXp=x|p♯(x)≥0intoZ0

󰀏󰀑

2.sisaBorelmapfromthesetYp=y|p♭(y)≤0intoZ0

3.Forµ-almosteveryxwithp♯(x)>0,thefunctionz→u(x,z)−p(z)attainsitsmaximumatasinglepointz=d(x)∈Z04.Forν-almosteveryywithp♭(y)<0,thefunctionz→p(z)−v(y,z)attainsitsmaximumatasinglepointz=s(y)∈Z0

5.Forµ-almosteveryxwithp♯(x)=0,thefunctionz→u(x,z)−p(z)attainsitsmaximumattwopoints,∅dandz=d(x)∈Z06.Forν-almosteveryywithp♭(y)=0,thefunctionz→p(z)−v(y,z)attainsitsmaximumattwopoints,∅sandz=s(y)∈Z07.ThedemandandsupplydistributionsαandβassociatedwithdandshavethesamemarginalsonZ0:

∀A⊂Z0,

µ[x|d(x)∈A]=ν[y|s(y)∈A]

Forthesakeofsimplicity,weshallnowassumethata(z)4.2Uniqueness

Theorem18Let(p1,d1,s1)and(p2,d2,s2)betwopureequilibria.Everycon-sumerxwhoisactiveinoneequilibriumisactiveorindifferentintheother,andwehaved1(x)=d2(x).Similarly,everyproducerywhoisactiveinoneequilibriumisactiveorindifferentintheother,ands1(y)=s2(y).

Proof.Itisanimmediateconsequenceoftheuniquenesstheoremforequi-libriumallocations.

4.3Existence

Theorem19Assumethatthestandardassumptionshold.AssumemoreoverthatµandνareabsolutelycontinuouswithrespecttotheLebesguemeasure,andthatthepartialderivativesDxuandDyvwithrespecttozareinjective:

∀x∈X,Dxu(x,z1)=Dxu(x,z2)=⇒z1=z2(9)∀y∈Y,Dyv(y,z1)=Dyv(y,z2)=⇒z1=z2

(10)

Thenanyequilibriumispure.

Corollary20Intheabovesituation,thereisapureequilibrium.

Proof.Weknowthatthereisanequilibrium,bytheExistenceTheorem,andweknowthatithastobepure.

∂x∂z

=0

sothatcondition(9),or(10)forthatmatter,isamulti-dimensionalgeneraliza-tionoftheclassicalSpence-Mirrleesconditionintheeconomicsofassymmetric

information(see[2]).Itissatisfied,forinstance,byu(x,z)=󰀚x−z󰀚α

,pro-videdα=0andα=1;ifα<1,oneshouldaddtherequirementthatX∩Z=∅,sothatuisdifferentiableonX×Z.

4.4

Example

4.4.1

AcasewhenZa=∅=Zb

SetX=[1,2]andY=[2,3].BothareendowedwiththeLebesguemeasure.SetZ0=[0,1]and

u(x,z)=−

1

2yz2,v¯(y)=0

sothatsuppliersareorderedonthelineaccordingtoefficiency,themostefficient

ones(thosewiththelowestcost,neary=2)beingontheleft,andconsumersareorderedaccordingtotaste,themostavidones(thosewiththehighestutility,nearx=2)beingontheright(notetheorderreversal).

Wecomputethelowestaska(z)andthehighestbidb(z):

b(z)=u¯♯(z)=1max≤x≤2󰀅

1

2

z2+2za(z)=v¯♭(z)=2min

≤y≤3

󰀅1

Notethatb(z)isthebidpriceforconsumerx=2(themostavidone),anda(z)istheaskpriceforsuppliery=2(theleastefficientone).Wehavea≤basexpected.

NotethatthegeneralizedSpence-Mirrleesassumptions(9)and(10)aresat-isfied:

Dxu(x,z)=z

D1

yv(y,z)=

1+yw(x,y)=

1

1+y

wherew(x,y)istheresultingutilityforthepair.Wethenseekthemeasure-preservingmapσ:[1,2]→[2,3]whichmaximizestheintegral:

󰀇2dx=

1

󰀇2

x,σ(x))x2

w(1

∂x∂y

=−

x

5−x(11)

s(y)=

4−y

andthesetoftradedqualitiesisZt=uniquelydefined,andisfound󰀕13by󰀖

,whichisastrictsubsetofZ0:again,notalltechnologicallyfeasiblequailitiesaretradedinequilibrium.OnZt,thepriceiswritingthefirst-orderconditionforoptimality,p′(z)=∂u

1

2

z2+5z−5ln(z+1)+cfor

3

(13)

Wecannowtrytovalidateourassumptionthateveryagentisactive.Com-putetheindirectutilities:

p♯(x)=u(x,d(x))−p(d(x))=x+5(ln5−ln(5−x))−c−p♭(y)=p(s(y))−v(y,s(y))=

(4−y)(6+y)

8+5ln

5

4

=2.1157(14)

Foranycinthatthefunctionp(z)givenbyformula(13)isrestrictiontoZt=given󰀕1interval,by3(12)󰀖theofanequilibriumprice,theequilibriumsupplyanddemandbeingand(11).Wehavetoz∈󰀕now0,1󰀖extendpttoZ0=[0,1]z=

1insuchawaythatthequalities3,1arenottraded.Forbesuchthateachofthemprefersstayingat

1

4must4

󰀎−v󰀌

3,1

4

󰀎−p󰀌

1z2+z+1−5ln5

z2+

9

+cfor0≤z≤

1

22

4

3,

wegettheinequalities:−

1

8

3

+c≤p(z)≤z2+

3

+cfor

2

4.4.2AcasewhenZaisnon-empty

Letusnowincreasethenumberofconsumers:sayY=[2,3]isunchanged,whileX=[h,2]with02

z2+5z−5ln

4(z+1)

4≤z≤

2

4

=s(3).For01

2

z2+z

Consumersoftypex<1willhavealowerbidprice.Chooseacontinuousfunctionpsuchthat:

1

4󰀎−v󰀌

3,1172z2+4(18)Theleftinequalityensuresthatconsumersortypex<1arenotbiddersfor

qualityz,sotheyjustbuyquality0atprice0,thatis,theyreverttotheirreservationutility.Therightinequalityensuresthattheleastefficientproducerwillnotbecomeinterestedinproducingqualityz,sothatthemoreefficientoneswillnoteither.

Anyfunctionp(z)satisfying(17),(18)and(16)(with1+5ln5

wheretisthequantityofthesecondgood,andπits(linear)price.Ourmethodsdonotreadilyapplytothissituation,andweplantoinvestigateitfurther.Finally,wewishtostressthatalthoughwehavewhatappearsasacompleteequilibriumtheoryformultidimensionalhedonicmodels,thenumericalaspectsarefarfrombeingaswellunderstood.Themethodweusedintheexampleisstrictlyone-dimensional,andthereisnoeasywaytoextendittothemul-tidimensionalcase.Theobviouswaytoproceedistofollowthetheoreticalargument,andtrytominimizetheintegralI(p)in(33),butwehavemadenoprogressinthatdirection.Itcertainlyisagoodtopicforfutureresearch.Sowillalltheeconometricaspects(characterizationandidentification).Thisinvestigationhasbeenstartedin[4],butisfarfrombeingcomplete.

References

[1]G.Becker(1965)”Astudyoftheallocationoftime”,EconomicJournal

75,p.493-517[2]G.Carlier(2003)”Dualityandexistenceforaclassofmasstransporta-tionproblemsandeconomicapplications”,AdvancesinMathematicalEco-nomics5,p.1-21[3]L.Court(1941)”Entrepreneurialandconsumerdemandtheoriesforcom-modityspectra”Econometrica9,p.135-62and241-97[4]I.Ekeland,J.HeckmanandL.Nesheim(2004)”Identificationandestima-tionofhedonicmodels”,JournalofPoliticalEconomy112(S1),p.60-109[5]I.Ekeland(2005)”Anoptimalmatchingproblem”,ESAIM:Control,Op-timisationandCalculusofVariations,11(1)p.57-71[6]N.Gretzki,J.OstroyandW.Zame(1992)”Thenonatomicassignment

model”,EconomicTheory2,p.103-127[7]N.Gretzki,J.OstroyandW.Zame(1999)”Perfectcompetitioninthe

continuousassignmentmodel”,JournalofEconomicTheory88,p.60-118[8]Z.Grilichesed.(1971)”Priceindexesandqualitychange”,HarvardUni-versityPress[9]H.Houthakker(1952),”Compensatedchangesinquantitiesandqualities

consumed”,ReviewofEconomicStudies19(3),p.155-164[10]T.KoopmansandM.Beckmann(1957)”Assignmentproblemsandthe

locationofeconomicactivities”.Econometrica25,p.53-76[11]K.Lancaster(1966)”Anewapproachtoconsumertheory”,Journalof

PoliticalEconomy74(2),p.132-157

21

[12]R.Muth(1966)”Householdproductionandconsumerdemandfunction”.

Econometrica39,p,699-708[13]R.RamachandranandL.Ruschendorf(2004)”Assignmentmodelsforcon-strainedmarginalsandrestrictedmarkets”,Workingpaper[14]M.MussaandS.Rosen(1978)”Monopolyandproductquality”,Journal

ofEconomicTheory18,p.301-317[15]J.C.RochetandP.Chon´e(1998)”Ironing,sweepingandmultidimensional

screening”,Econometrica66(4),p.783-826[16]S.Rosen(1974)”Hedonicpricesandimplicitmarkets:productdifferentia-tioninpurecompetition”JournalofPoliticalEconomy(82),p.34-55[17]L.S.ShapleyandM.Shubik(1972)”TheassignmentgameI:thecore”

InternationalJournalofGameTheory1‘(1972),p.111-130[18]C.Villani(2003)”Topicsinmasstransportation”,GraduateStudiesin

Mathematics,AMS.

AFundamentalsofu-convexanalysis.

Inthissection,webasicallyfollowCarlier[2].

A.1u-convexfunctions.

WewillbedealingwithfunctiontakingvaluesinR∪{+∞}.

Afunctionf:X→R∪{+∞}willbecalledu-convexiffthereexistsanon-emptysubsetA⊂Z×Rsuchthat:

∀x∈X,f(x)=sup{u(x,z)+a}

(z,α)∈A

(19)

Afunctionp:Z→R∪{+∞}willbecalledu-convexiffthereexistsanon-emptysubsetB⊂X×Rsuchthat:

p(z)=sup{u(x,z)+b}

(x,b)∈B

(20)

A.2Subconjugates

Letf:X→R∪{+∞},notidentically{+∞},begiven.Wedefineitssubcon-jugatef♯:Z→R∪{+∞}by:

f♯(z)=sup{u(x,z)−f(x)}

x

(21)

Itfollowsfromthedefinitionsthatf♯isau-convexfunctiononZ(itmightbeidentically{+∞}).

22

Letp:Z→R∪{+∞},notidentically{+∞},begiven.Wedefineitssubconjugatep♯:X→R∪{+∞}by:

p♯(x)=sup{u(x,z)−p(z)}

z

(22)

Itfollowsfromthedefinitionsthatp♯isau-convexfunctiononX(itmightbeidentically{+∞}).

Example21Setf(x)=u(x,z¯)+a.Then

f♯(¯z)=sup{u(x,z¯)−u(x,z¯)−a}=−a

x

♯♯

Conjugationreversesordering:iff1≤f2,thenf1≥f2,andifp1≤p2,♯♯

thenp1≥p2.Asaconsequence,iffisu-convex,notidentically{+∞},thenf♯isu-convex,notidentically{+∞},.Indeed,sincefisu-convex,wehavef(x)≥u(x,z)+aforsome(z,a),andthenf♯(z)≤−a<∞.

Proposition22(theFenchelinequality)Foranyfunctionsf:X→R∪{+∞}andp:Z→R∪{+∞},notidentically{+∞},wehave:

∀(x,z),f(x)+f♯(z)≥u(x,z)∀(x,z)p(z)+p♯(x)≥u(x,z)

A.3Subgradients

Letf:X→R∪{+∞}begiven,notidentically{+∞}.Takesomepointx∈X.Weshallsaythatapointz∈ZisasubgradientoffatxifthepointsxandzachieveequalityintheFenchelinequality:

f(x)+f♯(z)=u(x,z)

(23)

Thesetofsubgradientsoffatxwillbecalledthesubdifferentialoffatxanddenotedby∂f(x).Specifically:

󰀏󰀑

Definition23∂f(x)=argmaxzu(x,z)−f♯(z)

Similarly,letp:Z→R∪{+∞}begiven,notidentically{+∞}.Takesomepointz∈Z.Weshallsaythatapointx∈Xisasubgradientofpatzif:

p♯(x)+p(z)=u(x,z)

(24)

Proposition25Thefollowingareequivalent:

23

Thesetofsubgradientsofpatzwillbecalledthesubdifferentialofpatzanddenotedby∂p(z).

󰀏󰀑

Definition24∂p(z)=argmaxxu(x,z)−p♯(x)

1.z∈∂f(x)

2.∀x′,f(x′)≥f(x)+u(x′,z)−u(x,z)

Ifequalityholdsforsomex′,thenz∈∂f(x′)aswell.

Proof.Webeginwithprovingthatthefirstconditionimpliesthesecondone.Assumez∈∂f(x).Then,by(23)andtheFenchelinequality,wehave:

f(x′)≥u(x′,z)−f♯(z)=u(x′,z)−[u(x,z)−f(x)]

Wethenprovethatthesecondconditionimpliesthefirstone.Usingtheinequality,wehave:

f♯(z)=sup{u(x′,z)−f(x′)}

x′

≤sup{u(x′,z)−f(x)−u(x′,z)+u(x,z)}

x′

=u(x,z)−f(x)

sof(x)+f♯(z)≤u(x,z).WehavetheconversebytheFenchelinequality,soequalityholds.

Finally,ifequalityholdsforsomex′incondition(2),thenf(x′)−u(x′,z)=f(x)−u(x,z),sothat:

∀x′′,f(x′′)≥f(x)−u(x,z)+u(x′′,z)

=f(x′)−u(x′,z)+u(x′′,z)

whichimpliesthatz∈∂f(x′).

Thisexamplegeneralizestoallu-convexfunctions.DenotebyCu(Z)thesetofallu-convexfunctionsonZ.

Proposition27Foreveryfunctionp:Z→R∪{+∞},notidentically{+∞},wehave

p♯♯(z)=sup{ϕ(z)|ϕ≤p,ϕ∈Cu(Z)}

ϕ

Proof.Denotebyp¯(z)theright-handsideoftheaboveformula.Wewanttoshowthatp♯♯(z)=p¯(z)

♯♯♯♯

Sincep≤pandpisu-convex,wemusthavep♯♯≤p¯.Ontheotherhand,p¯isu-convexbecauseitisasupremumofu-convexfunctions.SotheremustbesomeB⊂X×Rsuchthat:

p¯(z)=sup{u(x,z)+b}

(x,b)∈B

Let(x,b)∈B.Sincep¯≤p,wehaveu(x,z)+b≤p¯(z)≤p(z).Taking

biconjugates,asintheprecedingexample,wegetu(x,z)+b≤p♯♯(z).Takingthesupremumsover(x,b)∈B,wegetthedesiredresult.

Definition29Weshallsaythatafunctionp:Z→R∪{+∞}isu-adaptedifitisnotidentically{+∞}andthereissome(x,b)∈X×Rsuchthat:

∀z∈Z,p(z)≥u(x,z)+b

Itfollowsfromtheabovethatifpisu-adapted,thensoarep♯,p♯♯andallfurthersubconjugates.Notethatau-convexfunctionwhichisnotidentically{+∞}isu-adapted.

25

Corollary30Letp:Z→R∪{+∞}beu-adapted.Then:

p♯♯♯=p♯

Proof.Ifpisu-adapted,thenp♯isu-convexandnotidentically{+∞}.Theresultthenfollowsfromcorollary28.

toz′,weget:

p♯(x)≤sup{u(x,z′)−ϕz(z′)}−ε

z′

󰀏󰀑=supu(x,z′)−u(x,z′)+u(x,z)−p♯♯(z)−ε

z′

=u(x,z)−p♯♯(z)−ε=p♯(x)−ε

whichisacontradiction.Theresultfollows

A.6v-concavefunctions.

LetusnowconsiderthedualitybetweenYandZ.Givenv:Y×Z→R,wesaythatamapg:Y→R∪{−∞}isv-concaveiffthereexistsanon-emptysubsetA⊂Z×Rsuchthat:

∀y∈Y,g(y)=

(z,a)∈A

inf{v(y,z)+a}(29)

andafunctionp:Z→R∪{−∞}willbecalledv-concaveiffthereexistsanon-emptysubsetB⊂X×Rsuchthat:

p(z)=

(x,b)∈B

inf{v(y,z)+b}(30)

Alltheresultsonu-convexfunctionscarryovertov-concavefunctions,withobviousmodifications.Thesuperconjugateofafunctiong:Y→R∪{−∞},notidentically{−∞},isdefinedby:

g♭(z)=inf{v(y,z)−g(y)}

y

(31)

andthesuperconjugateofafunctionp:Z→R∪{−∞},notidentically{−∞},isgivenby:

p♭(y)=inf{v(y,z)−p(z)}(32)

z

Thesuperdifferential∂p♭isdefinedby:

∂p♭(y)=argmin{v(y,z)−p(z)}

z

andwehavetheFenchelinequality:

p(z)+p♭(y)≤v(y,z)∀(y,z)

withequalityiffz∈∂p♭(y).Notefinallythatp♭♭≥p,withequalityifpis

v-concave

27

B

B.1

Somenotationsanddefinitions.

Radonmeasuresandprobabilities.

WithalocallycompactsetΩ(suchasanopensubsetofthecompactsetZ)wewillassociatethefollowingsetsoffunctionsandmeasuresonΩ:•K(Ω),thespaceofcontinousfunctionsonΩwithcompactsupport•Cb(Ω),thespaceofboundedcontinousfunctionsonΩ•C+(Ω),theconeofnon-negativefunctions•M(Ω),thespaceofmeasuresonΩ

•M+(Ω)⊂M(Ω),theconeofpositivemeasures•Mb(Ω)⊂M(Ω),theconeoffinitemeasures

•Mb+(Ω)=Mb(Ω)∩M+(Ω),theconeofpositivefinitemeasures•P(Ω)⊂Mb+(Ω)thesetofprobabilitiesonΩ

ThespaceK(Ω)willbeendowedwiththetopologyofuniformconvergenceoncompactsubsetsofΩ,andthespaceCb(Ω)withtheuniformnorm.ThenCb(Ω)isaBanachspace,butK(Ω)isnot,unlessΩiscompact,inwhichcaseallcontinuousfunctionsonΩarebounded,andwehaveC(Ω)=K(Ω)=Cb(Ω).WhenΩisfiniteandhasdelements,allthesespacescoincidewithRd.

WetakemeasuresinthesenseofRadon,thatis,M(Ω)isdefinedtobethedualofK(Ω)andMb(Ω)isdefinedtobethedualofCb(Ω).SoMb(Ω)isaBanachspace,butM(Ω)isnot,unlessΩiscompact,inwhichcaseM(Ω)=Mb(Ω),thatis,allRadonmeasuresonΩ󰀍arefinite.Forγ∈M(Ω)andϕ∈K(Ω),wewriteindifferently<γ,ϕ>orZϕdγ.

Aprobabilityγ∈P(Z)isdefinedasanon-negativeboundedmeasuresuchthat<γ,1>=1.ThesetP(Z)isconvex,andiscompactintheweak*topology:γn→γif<γn,ϕ>→<γ,ϕ>foreveryϕ∈Cb(Ω).

WesaythatameasureγiscarriedbyKif<γ,ϕ>=0forallϕ∈K(Ω)whichvanishonK.IfγiscarriedbyasubsetK,itisalsocarriedbyitsclosure.Thesupportofameasureγ,denotedbySupp(γ),isthesmallestclosedsetKsuchthatγiscarriedbyK.

B.2Conditionalprobabilitiesandmarginals.

GivenapositivemeasureαX×Z∈M+(X×Z)(whichhastobefinite,sinceX×Ziscompact)wedefineitsmarginalsαX∈M+(X)andαZ∈M+(Z)asfollows:

28

󰀇

ϕ(x)dαX=ψ(z)dαZ=

X󰀇

Z

󰀇X×Z

X×Z

󰀇

ϕ(x)dαX×Zψ(z)dαX×Z

∀ϕ∈K(X)∀ψ∈K(Z)

andwedenotetheprobabilityofthesecondcoordinatebeingzconditionalon

α

thefirstcoordinatebeingxbyPx(z).Themathematicalexpectationwith

α

respecttothisprobabilitywillbedenotedbyEx:

󰀇

ααEx[ψ]=ψ(z)dPx(z)

Z

Thisconditionalprobabilityisrelatedtothefirstmarginalbytheformula:

󰀇󰀇

αEx[f(x,z)]dαX∀f∈K(X×Z)f(x,z)dαX×Y=

X×Z

X

SimilarconsiderationsholdforpositivemeasuresβY×Z∈M+(Y×Z),We

have:

󰀇󰀇

ϕ(y)dβY×Z∀ϕ∈K(Y)ϕ(y)dβY=

󰀇Y󰀇Y×Z

ψ(z)dβZ=ψ(z)dβY×Z∀ψ∈K(Z)ZX×Z

󰀇󰀇

β

g(y,z)dβY×Z=Ey[g(y,z)]dβY∀g∈K(Y×Z)

Y×Z

Y

C

C.1

ProofoftheExistenceTheorem

Thedualproblem:existence

RecallthatZ={∅d}∪Z0∪{∅s},withZ1={z|a(z)≤b(z)}acompact

non-emptysubsetofZ0.DenotebyAthesetofalladmissiblepricesystemsonZ,thatis,thesetofallcontinuousmapsp:Z→Rwhichsatisfy:

∀z∈Z1,

a(z)≤p(z)≤b(z)

Aisanon-empty,convexandclosedsubsetofK(Z),thespaceofallcon-tinuousfunctionsonZ.NowdefineamapI:K(Z)→Rby:

󰀇󰀇

p♭(y)dν(33)p♯(x)dµ−I(p)=

X

Y

Proposition33ThemapIisconvex

29

Proof.Takep1andp2inA.Takesandtin[0,1]withs+t=1.Then:(sp1+tp2)(x)=sup{u(x,z)−sp1(z)−tp2(z)}

z

=sup{s[u(x,z)−p1(z)]+t[u(x,z)−p2(z)]}

z

≤ssup{u(x,z)−p1(z)}+tsup{u(x,z)−p2(z)}=

z♯

sp1(x)

z

+

tp♯2

(x)

Similarly,wefindthat:

(sp1+tp2)(y)≥sp♭1(x)+tp2(x)

Integrating,wefindthatIisconvex,asannounced.

Proposition36Problem(P)hasasolution.

󰀂󰀁♭󰀏♭♭󰀑♭♭♭

Similarly,wefindthatp♭♭=p,withp=minp,bbb

♭Proof.Takeaminimizingsequencepn.Sincethefunctionsp♯n(resp.pn),n∈N,areu-convex(resp.v-concave),theyareuniformlyLipschitzian(seesectionA),andhenceequicontinuous.ByAscoli’stheoremwecanextract

uniformlyconvergentsubsequences(stilldenotedbyp♯nandpn):

p♯n→fp♭n→g

30

sothat:

󰀇

f(x)dµ−

(y)dν=inf

X

󰀇

gY

a≤p≤b

󰀐󰀇

p♯(x)dµ−

♭(y)dν

X

󰀇

pY

󰀓

(35)

Itiseasytoseethatfisu-convexandgisv-concave.Inaddition,p♯♯fandpgeverywhere(anduniformlyaswell,sincethefunctionsn→♯♭♭n→♭

are

equicontinuous).Sincep♯♯n≤p♭♭n,wegetf♯≤g♭

inthelimit.Sincepn≤b,

wehavep♯♯n≤b

♯♯

=b,andlettingn→∞,wefindthatf♯≤b.Sincef♯isu-convex,itiscontinuous(andevenLipschitzian,seesectionA).Similarly,g♭isv-concave,hencecontinuous,andsatisfiesg♭≥a.Nowtakeanycontinuouspriceschedulep¯suchthat

󰀂f♯󰀁♯♯=max󰀏f♯,a󰀑≤p¯≤min󰀒g♭

a,b󰀔=󰀉g♭󰀋♭♭b

(36)

forinstancep¯=

1

Theproofindicatesthatuniquenessisnottobeexpected.Thefollowing

resultistheNon-UniquenessTheoremforprices:

Proposition37Letpbeasolutionofproblem(P).Thenp♯♯♭♭

isanadmissiblepricescheduleaandpsuchthat:

barealsosolutions.Moregenerally,ifqp♯♯a(z)≤q(z)≤p♭♭

b(z)

∀z∈Z1

thenqisasolutionofproblem(P).

Proof.Fromp♯♯a≤q≤p♭♭b,we♭

q♯≤󰀂p♯♯󰀇

a

󰀁deducethatp=󰀂p♭♭♯

b=p♯.Substitutingintotheintegral,weget:󰀁♭

≤q♭andthatq♯

(x)dµ−

󰀇q♭(y)dν≤X

Y

󰀇p♯(x)dµ−X

󰀇p♭(y)dν=inf(P)Y

andsinceqisadmissible,itmustbeaminimizer.

♭♭

Proof.󰀂♭♭󰀁BytheprecedingProposition,pbisasolutionofproblem(P),sothatIpb=I(p).Substitutingintheintegrals,weget:

󰀇󰀇󰀇󰀉󰀋♭󰀇󰀉󰀋♯

♯♭♭♭♭

p♭(y)dνp(x)dµ−pbdν=pbdµ−

X

Y

X

Y

󰀂♭♭󰀁♯

Corollary38Letpbeasolutionofproblem(P).Thenp=pb,µ-almost

󰀂󰀁♭

,ν-almosteverywhere.everywhere,andp♭=p♯♯a

󰀂󰀁♭

andsincep♭♭=p♭,thisreducesto:b

󰀇󰀇󰀉󰀋♯

♭♭

p♯(x)dµpbdµ=

X

X

󰀂♭♭󰀁♯

Sincep♭♭≤p,wehavepb≥p♯,andsincetheintegralsareequal,itb

󰀂󰀁♯󰀂♯♯󰀁♭

followsthatp♯=p♭♭,µ-a.e.Thesameargumentshowsthatp=pa,bν-a.e.

Notethatwealreadyhavep(z)=p♯♯(z)foreveryz∈D(x),andp(z)=p♭♭(z)foreveryz∈S(y)

C.2Thedualproblem:optimalityconditions

RecallthatwehavedefinedamapI:K(Z)→Rby:

󰀇󰀇

p♭(y)dνp♯(x)dµ−I(p)=

X

Y

WehavecheckedthatthefunctionIisconvex.Itiseasilyseentobecon-♯♭♭

tinuous:ifpn→puniformlyonZ,thenp♯n→puniformlyonXandpn→puniformlyonY.Ontheotherhand,thesetAisnon-empty,convexandclosedinK(Z).Thismeansthattheconstraintqualificationconditionsholdinproblem(P):anecessaryandsufficientconditionforp¯tobeoptimalisthat:

0∈∂I(¯p)+NA(¯p)

(37)

where∂I(¯p)isthesubgradientofIatp¯inthesenseofconvexanalysis,andNA(¯p)isthenormalconetoAatp¯.Allwehavetodonowistocomputebothofthem.

32

C.2.1Computing∂I(p)

Lemma40Letp∈K(Z)andϕ∈K(Z).Then,foreveryx∈Xandeveryy∈Y,wehave:

1hlim

h>→0

0󰀄

(p+hϕ)♭

(y)−p♭

h

(y)󰀆

=−max{ϕ(z)|z∈S(y)}

Proof.Letusprovethesecondequality;thefirstoneisderivedinasimilarway.Takez∈Sp(y)andzh∈Sp+hϕ(y).FromthedefinitionofSp(y)andSp+hϕ(y),wehave:

v(y,zh)−p(zh)≥p♭(y)=v(y,z)−p(z)

v(y,z)−p(z)−hϕ(z)≥(p+hϕ)♭

(y)=v(y,zh)−p(zh)−hϕ(zh)Substracting,wefindthat:

−hϕ(z)≥(p+hϕ)♭(y)−p♭(y)≥−hϕ(zh)

(38)

SincezisanarbitrarypointinSp(y),wecantakeittobetheminimizerontheleft-handside,andthisinequalitybecomes:

−hmax{ϕ(z)|z∈Sp(y)}≥(p+hϕ)♭(y)−p♭(y)≥−hϕ(zh)

Nowleth→0.Thefamilyzh∈Sp+hϕ(y)musthaveclusterpoints,becauseZiscompact,andanyclusterpointz¯mustbelongtoSp(y).Takinglimitsininequality(38),wefindthat,forsomez¯∈Sp(y):−max{ϕ(z)|z∈Sp(y)}≥hlim

1

h>→0

0

Becauseofinequality(39),wecanapplytheLebesgueconvergencetheorem,andweget:

hlim

1

h>→0

0Lemma41Foreveryϕ∈C(Z),wehave:

󰀇

min{ϕ(z)|z∈D(x)}dµ=min

(41)󰀇

X

󰀅󰀇ϕ(d(x))dµ|d∈B(X,D)X󰀈max{ϕ(z)|z∈S(y)}dν=max󰀅󰀇ϕ(s(y))dµ|s∈B(Y,S)

󰀈(42)

Y

Y

Proof.Givenϕ∈C(Z),themultivaluedmapsΓ1andΓ2definedby:

Γ1(x)=argmin{ϕ(z)|z∈D(x)}Γ2(y)=argmax{ϕ(z)|z∈S(y)}

havecompactgraph.Formulas(41)and(42)thenfollowfromastandardmea-surableselectiontheorem.

andbyintegratingwithrespecttoµ,wegetthedesiredresult:

󰀇󰀇ϕdαZ≥min{ϕ(z)|z∈D(x)}dµZX

󰀅󰀇󰀈=minϕ(z)dµ|z∈D(x)

X󰀅󰀇󰀈=minϕ(d(x))dµ|d∈B(X,D)

X

h

[I(p+hϕ)−I(p)]󰀅󰀇

󰀈󰀅󰀇󰀈

=maxϕdβZ|βY×Z∈M+(Y,S)−minϕdαZ|αX×Z∈M+(X,D)

ZZ󰀅󰀇󰀈󰀇

=maxϕdαZ|βY×Z∈M+(Y,S),αX×Z∈M+(X,D)ϕdβZ−

Z

Z

Proposition43ThesubdifferentialofIatpisgivenby:

∂I(p)={βZ−αZ|βY×Z∈M+(Y,S),αX×Z∈M+(X,D)}

Proof.Takeλ∈M(Z)=Mb(Z).Bydefinitionofthesubgradient,λ∈∂I(p)ifandonlyif,foreveryϕ∈K(Z)andh>0,wehave:

󰀇

ϕdλI(p+hϕ)≥I(p)+h

Z

SinceIisconvex,thisisequivalentto:

h→0

h>0

lim

1

35

C.2.2ComputingNA(p)

Takeλ∈M(Z)=Mb(Z).Bydefinition,λ∈NA(p)ifandonlyif,foreveryq∈A,wehave:󰀇

(q−p)dλ≤0

Z

Sinceq(∅d)=p(∅d)=0andq(∅s)=p(∅s)=0foreveryq∈A,thisconditionisequivalentto:

󰀇

(q−p)dλ≤0(45)

Z0

Tointerpretthiscondition,weneedsomenotation.Set:

Zb={z∈Z0|a(z)b

Za={z∈Z0|a(z)M={z∈Z0|a(z)=p(z)=b(z)}N={z∈Z0|a(z)>b(z)}

b

sothatwehaveapartitionofZ0intosubsetsZ0=Za∪Za∪Zb∪M∪N,where

b

Za∪Za∪Zb∪M=Z1,thesetofmarketablequalities.

bb

Denotebyλb,λba,λa,λM,λNtherestrictionsofλtoZ,Za,Za,ZM,ZNrespectively.Notethatsinceλwasaboundedmeasure,soareλb,λba,λa,λMandλN.Con-dition(45)isequivalenttothefollowing:

λb≥0,λba=0,λa≤0,λN=0

C.2.3

Concludingtheproof.

(46)

Letp¯beasolutionofproblem(P).Bycondition(37),wehave0∈∂I(¯p)+NA(¯p).ByProposition43,thismeansthatthereexistsβY×Z∈M+(Y,S),αX×Z∈M+(X,D)andλ∈M(Z)satisfying(46)suchthatαZ−βZ=λ.

b

,ZarespectivelyareInotherwords,therestrictionofαZ−βZtoZb,Za

positive,zeroandnegative:

αZ≥βZonZb

b

αZ=βZonZa

(47)(48)(49)(50)

αZ≤βZonZaαZ=βZonN

ThereisnoconditionontherestrictionofαZorβZto{∅d},{∅s}orM.

αα

SincePxiscarriedbyD(x),wemusthavePx(z)=0wheneverz∈/D(x),

β

whichcertainlyisthecasewhenp(z)>b(z).Similarly,Py(z)=0when

36

α

p(z)b(z)orp(z)β

orPy(z)=0.TheconditionαZ=βZonNthenimpliesthat:

αZ=βZ=0onN

Wewillnowshowthatthereexistsα′X×Z∈M+(X,D)andβY×Z∈M+(Y,S)

suchthatα′Z0=βZ0.ThiswillbedonebysuitablymodifyingαX×ZandβY×ZonthesubsetsZbandZa(notethattheyarebothsubsetsofZ0).Inthesequel,wewilldenotebyαX×A(resp.βY×B)therestrictionofαX×Z(resp.βY×Z)toX×A(resp.Y×B),forA⊂X(resp.B⊂Y),andbyαA(resp.βB)themarginalonA(resp.B).OnX×Zb,wehave,by:

󰀇󰀇

αβ

αX×Zb=PzdαZbandβX×Zb=PzdβZb

Z

Z

withαZb≥βZbby(47).Defineα′X×Zby:

󰀇

αPzdβZbα′X×Zb=

Z

󰀂󰀁󰀂󰀁

α(X×{∅d})=α(X×{∅d})+αZb−βZbα′X×(Z−Zb∪{∅d})=αX×(Z−Zb∪{∅d})

Clearlyα′X×Zisapositivemeasure.Itfollowsfromthefirstequationthat

αZb=βZb,andfromthesecondthatα′x=αX=µ.Itremainstocheckthat′

αX×Z∈M+(X,D).WealreadyknowthatαX×Z∈M+(X,D),meaningthat

α

forPx[D(x)]=1forµ-a.e.x,anditdiffersfromα′X×Zonlyintheregion

α

wherez∈Zborz=∅d.IfD(x)∩Zb=∅thenPx[D(x)]=1aswell.IfD(x)

bb

intersectsZ,sothatz∈Z∩D(x),thenconsumerxispayingthehighestbidpriceforz,andsohemustbeindifferentbetweenzand∅d;thisshowsthat∅dalsobelongstoD(x).Inthenewallocationα′X×Z,someofthedemandmaybetransferedfromZb∩D(x)to∅dwithpositiveprobability,butthisredistributionoccurswithinD(x)anddoesnotaffectthetotalprobability,so

α′

thatPx[D(x)]=1.

Inwords,foreveryqualityzwherethehighestbidpriceispaid,weclearthemarketbylettingsomeofthe󰀂demandgoallproducersyhave󰀁󰀂unsatisfied:󰀁bb

sold,butthereistotalquantityαZ−βZofpotentialbuyerswhicharethrownoutofthemarket.However,theydon’tcare,becausethepriceaskedisthehighestbidprice,andtheyareindifferentbetweenbuyingornor.

Wethenshiftsomeofthesupplyto∅s,aswedidforthedemand.Weendup

withα′X×Z∈M+(X,D)andβY×Z∈M+(Y,S)whichsatisfytheconclusionsoftheExistenceTheorem.

37

D

D.1

Remainingproofs

Paretooptimalityofequilibriumallocations

Witheverypairofdemandandsupplydistributions,α′X×Z∈M+(X,D)and′

βY×Z∈M+(Y,S),weassociatethenumber:

󰀁󰀂′

JαX×Z,βY×Z=

󰀇

u(x,z)dα′X×Z−

󰀇

v(y,z)dβY×Z

Y×Z󰀇󰀇X×Z

β′α′

Ey[v(y,z)]dν(y)Ex[u(x,z)]dµ(x)−=

X

Y

Assumethatα′Z0=βZ0.Weclaimthat:

󰀇󰀇

β′α′

[p(z)]dν(y)=0EyEx[p(z)]dµ(x)−

X

Y

(51)

Indeed,theleft-handsidecanbewrittenas:

󰀎󰀌󰀇󰀇

′′′′

+p(∅d)(α′p(z)dβZp(z)dα′Z[∅d]−βZ[∅d])+p(∅s)(αZ[∅s]−βZ[∅s])Z−

Z0

Z0

Thefirsttermvanishesbecauseα′Z0=βZ0,andthetwonexttermsvanishbecausep(∅d)=p(∅s)=0.

Substracting(51)fromJ,weget:

󰀇󰀇

󰀁󰀂′

β′α′′

[v(y,z)−p(z)]dν(y)Ex[u(x,z)−p(z)]dµ(x)−EyJαX×Z,βY×Z=

(52)

ByFenchel’sinequality,(u(x,z)−p(z))≤p(x)forallz∈Z.Taking

α′

expectationswithrespecttotheprobabilityPx,weget:

α

Ex[u(x,z)−p(z)]≤p♯(x)

XY

(53)

withequalityifandonlyifu(x,z)−p(z)=p♯(x)(inotherwords,z∈D(x))

α′

forPx-almosteveryz∈Z.Similarly,wehave:

β

Ey[v(y,z)−p(z)]≥p♭(y)

(54)

withequalityifandonlyifv(y,z)−p(z)=p♭(y)(inotherwords,z∈S(y))

β′

forPy-almosteveryz∈Z.Writingthisin(52),andtreatingthesecondterminthesameway,weget:

󰀇󰀇󰀁󰀂′

♯′

p(x)dµ−p♭(y)dν(55)JαX×Z,βY×Z≤

X

Y

Theright-handsideisequaltoJ(αX×Z,βY×Z),foranyequilibriumalloca-tion(α,β).Thisprovesthatequilibriumallocationssolvetheplanner’sproblem,

andassuchtheyareParetooptimal.

38

D.2Uniquenessofequilibriumallocations

Observethatequalityholdsin(55)ifandonlyifequalityholdsin(53)forµ-almosteveryx,andequalityholdsin(54)forν-almosteveryy.Thismeans

α′β′

thatPx[D(x)]=1forµ-almosteveryxandPy[S(y)]=1forν-almosteveryy.

D.3ProofofTheorem19

Let(p,αX×Z,βY×Z)beanequilibrium.ByRademacher’stheorem,sincep♯:X→RisLipschitz,andµisabsolutelycontinuouswithrespecttotheLebesguemeasure,p♯isdifferentiableeverywhere.󰀏µ-almost󰀑♯

ConsiderthesetA=x|p(x)≥0.Letx∈Abeapointwherep♯isdifferentiable,withderivativeDxp♯(x).Sincexisactiveorindifferent,thesetD(x)∩Z0isnon-empty,andwemaytakesomez∈D(x)∩Z0.Considerthefunctionϕ(x′)=u(x′,z)−p(z).Byproposition25,sinceD(x)⊂∂p♯(x),wehaveϕ≤fandϕ(x)=f(x),sothatϕandfmusthavethesamederivativeatx:

Dxf(x)=Dxu(x,z)(56)Bycondition(9),thisequationdefineszuniquely.Inotherwords,forµ-almosteverypointx∈A,thesetDZ0consists󰀏(x)∩󰀑ofonepointonly.Similarly,♭

forν-almosteverypointy∈B=y|p(y)≤0,thesetS(y)∩Z0consistsofonepointonly.Thisisthedesiredresult.

39

因篇幅问题不能全部显示,请点此查看更多更全内容

Top