· 001 ·
[文章编号] 1006-2440[2019]01-0001-05
·论著与基础研究·
姜黄素抑制星形胶质细胞和小胶质细胞中脂多糖
诱导的趋化因子的表达*
赵林霞**,曹德利,高永静
(南通大学疼痛医学研究院,特种医学研究院,江苏226019)
[摘 要] 目的:观察姜黄素对脂多糖诱导的星形胶质细胞和小胶质细胞中角质细胞源性趋化因子(CXCL1)和干扰素诱导蛋白10(CXCL10)表达的抑制作用。方法:(1)确定脂多糖刺激细胞的时间:将培养的C6星形胶质细胞株随机分为对照组、脂多糖1 h、3 h、6 h组。对照组未加入任何药物刺激;脂多糖1 h、3 h、6 h组应用1 μg/mL脂多糖分别刺激细胞1 h,3 h,6 h。采用real-time PCR方法检测细胞中趋化因子CXCL1和CXCL10 mRNA的表达,确定合适的脂多糖刺激时间。(2)姜黄素处理细胞实验:①C6细胞随机分成5组:对照组、脂多糖组、姜黄素2.5 μmol/L、10 μmol/L、25 μmol/L预处理组。对照组未加入任何药物刺激;脂多糖组用1 μg/mL脂多糖刺激细胞3 h;姜黄素预处理组分别用2.5 μmol/L、10 μmol/L、25 μmol/L姜黄素预孵育30 min后,再加入1 μg/mL脂多糖刺激细胞3 h。②原代培养的星形胶质细胞,分组方法和处理方法同①。③原代培养的小胶质细胞,随机分成对照组、脂多糖组、姜黄素25 μmol/L预处理组,方法同①。处理结束后,采用real-time PCR方法检测细胞中趋化因子CXCL1和CXCL10 mRNA的表达。结果:(1)与对照组比较,脂多糖刺激C6细胞3 h时,CXCL1(P<0.001)和CXCL10(P<0.05)表达最高,因此选择脂多糖刺激细胞时间为3 h。(2)在C6细胞中,与脂多糖组比较,姜黄素25 μmol/L预处理组CXCL1和CXCL10的表达均显著降低(P<0.001)。(3)在原代培养的星形胶质细胞中,与脂多糖组比较,姜黄素10 μmol/L预处理组(P<0.05)、姜黄素25 μmol/L预处理组(P<0.001)CXCL1的表达均显著降低,姜黄素25 μmol/L预处理组CXCL10的表达显著降低(P<0.001)。(4)在原代培养的小胶质细胞中,与脂多糖组比较,姜黄素25 μmol/L预处理组CXCL1和CXCL10的表达均显著降低(P<0.001)。结论:姜黄素能抑制星形胶质细胞和小胶质细胞中脂多糖诱导的趋化因子CXCL1和CXCL10的表达,具有抗炎作用。
[关键词] 姜黄素;星形胶质细胞;小胶质细胞;角质细胞源性趋化因子;干扰素诱导蛋白10
[中图分类号] R338.2 [文献标志码] A [DOI] 10.19767/j.cnki.32-1412.2019.01.001
Curcumin inhibits the expression of chemokines induced by lipopolysaccharide in
astrocytes and microglia*
ZHAO Linxia**, CAO Deli, GAO Yongjing
(Institute of Pain Medicine, Institute of Special Environmental Medicine, Nantong University, Jiangsu 226019)[Abstract] Objective: To investigate the inhibitory effect of curcumin (CUR) on the expression of keratinocyte-derived chemokine (CXCL1) and interferon-inducible protein 10 (CXCL10) induced by lipopolysaccharide (LPS) in astrocytes and microglia. Methods:(1) Determining the time point of LPS stimulation: The cultured astrocyte line C6 cells were randomly divided into the control group, LPS 1 h, 3 h, 6 h group. The control group received no drug stimulation; LPS 1 h, 3 h, 6 h groups were stimulated by 1 μg/mL LPS for 1 h, 3 h and 6 h, respectively. The expression of chemokines CXCL1 and CXCL10 mRNA in cells was detected by real-time PCR to determine the appropriate time point of LPS stimulation. (2) CUR treatments: ①C6 cells were randomly divided into 5 groups: the control group, the LPS group and the CUR 2.5 / 10 / 25 μmol/L + LPS group. The control group received no drug stimulation; the LPS group was stimulated by 1 μg/mL the LPS for 3 h; the CUR 2.5 / 10 / 25 μmol/L + LPS group were pre-incubated with 2.5 μmol/L, 10 μmol/L and 25μmol/L CUR for 30 min, and then stimulated by LPS for
* [基金项目] 国家自然科学基金项目(31371121,31700899)。
** [作者简介] 赵林霞,女,汉族,江苏盐城人,生于1986年8月,硕士,实验师。研究方向:慢性疼痛的机制。通信作者:高永静, E-mail:gaoyongjing@ntu.edu.cn
· 002 ·
交通医学 2019 年第 33 卷第 1 期Med J of Communications,2019,Vol.33,No.1
3 h. ②Primary cultured astrocytes, the grouping and treatments were the same as those in ①. ③Primary cultured microglia were randomly divided into 3 groups: The control group, the LPS group and the CUR 25 μmol/L + LPS group. The treatments were the same as in ①. After all the treatments, the expression of chemokines CXCL1 and CXCL10 mRNA in cells was detected by real-time PCR. Results:(1) Compared with that in the control group, the expression of CXCL1 (P<0.001) and CXCL10 (P<0.05) mRNA was higher and there was a significant difference at LPS 3 h. Then the time point of LPS stimulation was selected as 3 h. (2) In C6 cells, the expression of CXCL1 and CXCL10 was decreased significantly in the 25 μM CUR + LPS group compared with the LPS group (P<0.001). (3) In the primary cultured astrocytes, the expression of CXCL1 in the 10 μM CUR + LPS group (P < 0.05) and the 25 μmol/L CUR + LPS group (P<0.001) was decreased significantly compared with in the LPS group; the expression of CXCL10 was decreased significantly in the 25 μmol/L CUR + LPS group compared with in the LPS group (P<0.001). (4) In the primary cultured microglia, the expression of CXCL1 and CXCL10 was decreased significantly in the 25 μmol/L CUR + LPS group compared with in the LPS group (P<0.001). Conclusion:CUR inhibits the expression of chemokines CXCL1 and CXCL10 induced by LPS in astrocytes and microglia, and has anti-inflammatory effects.
[Key words] curcumin; astrocytes; microglia; CXCL1; CXCL10
胶质细胞是中枢神经系统中分布非常广泛的细胞,主要包括星形胶质细胞和小胶质细胞,参与神经系统多种免疫应答反应。星形胶质细胞是体积最大、分布最广泛的一类胶质细胞,起支持、营养神经细胞的作用,同时也参与突触传递、认知功能、营养代谢等多种生命活动[1]。小胶质细胞是最小的一类胶质细胞,是中枢神经系统中最主要的免疫防线。当中枢神经系统损伤时,小胶质细胞由静息状态转为激活状态,发生形态上的改变,分泌多种致炎因子,参与神经炎症性疾病、神经退行性疾病的发展过程[2-3]。
姜黄素是从姜科、天南星科等植物根茎中提取的一种化学成分,有研究表明,姜黄素具有抗炎、抗癌、抗感染、抗病毒、抗氧化等生物活性,临床上用于治疗癌症、阿尔茨海默病、心血管疾病、多种炎症性疾病等,受到国内外学者的广泛关注和研究[4-7] 。本研究通过脂多糖刺激星形胶质细胞和小胶质细胞建立细胞炎症模型,用不同浓度的姜黄素进行预处理,采用实时荧光定量PCR方法观察趋化因子CXCL1和CXCL10的表达变化,探讨姜黄素在胶质细胞炎症反应中的作用。1 材料与方法
1.1 材料 新生1~2 d的ICR红皮小鼠(南通大学实验动物中心),C6细胞(中国科学院上海细胞库),高糖/低糖DMEM、减血清培养基(OPTI-MEM)、胎牛血清(FBS)、D-Hank’s(Gibco公司),二丁酰基腺苷环磷酸(d-cAMP)、脂多糖、姜黄素、二甲基亚砜(Sigma-Al-drich公司),总RNA提取试剂Trizol(Invitrogen公司),
逆转录试剂盒(Takara公司),FS Essential DNA Green Master(Roche公司)。1.2 实验方法
1.2.1 C6细胞培养: 使用含10% FBS的高糖DMEM培养基培养于37℃,5%CO2培养箱中。每2天换1次液,于细胞对数生长期进行药物刺激。
1.2.2 原代星形胶质细胞和原代小胶质细胞培养: 新生1~2 d红皮小鼠,取大脑皮层置于装有预冷D-Hank’s液的培养皿中,剥去脑膜,剪碎组织,用移液器吹打至无组织碎块,用100 μm网筛过滤,离心3 000 g,5 min),弃上清。(1)原代星形胶质细胞培养:向离心后的沉淀中加入低糖完全培养基重悬细胞,用10 μm滤器过滤。以2.5×105个/孔接种于6孔板中,于37 ℃、5% CO2培养箱中培养,次日换液,之后每3天换1次液。当细胞生长汇合度达到95%时,加0.15 mmol/L d-cAMP诱导星形胶质细胞分化成熟,3天后进行药物处理。(2)原代小胶质细胞培养:向离心后的沉淀中加入高糖完全培养基重悬细胞,用10 μm滤器过滤。以3×106个/瓶接种于75 cm2培养瓶中,于37 ℃、5% CO2培养箱中培养,次日换液,之后每3天换1次液,培养12~14 d后,将培养瓶放于水平恒温37 ℃摇床上震摇,220 r/min,4 h。收集细胞悬液,离心1 000 g,5 min,再加入高糖完全培养基,计数,以3.5 ×105个/孔重新种到6孔板中,次日换液,培养箱中培养1~2 d进行药物处理。
1.2.3 细胞处理:(1) 用OPTI-MEM培养基稀释脂多糖至终浓度1 μg/mL,刺激备好的细胞1 h、3 h、6 h后,收集细胞;(2)用OPTI-MEM将姜黄素母液稀释
交通医学 2019 年第 33 卷第 1 期Med J of Communications,2019,Vol.33,No.1
· 003 ·
至2.5 μmol/L、10 μmol/L、25μmol/L,预孵育已备好的细胞30 min,再加入脂多糖(终浓度1 μg/mL)刺激3 h,收集细胞。
1.2.4 Real-time PCR检测mRNA的表达:Trizol法提取总RNA,逆转录合成cDNA,在Roche LightCycler 96 PCR仪中进行Real-time PCR反应。引物序列见表1。
PCR扩增条件为:预变性95 ℃,600 s;40个循环95 ℃ 10 s,60 ℃ 10 s,72 ℃ 10 s;溶解95 ℃ 10 s,65℃ 60 s,97 ℃ 1 s。数据分析采用Livak法分析。1.3 统计学处理 使用GraphPad Prism 5统计学软件进行分析。计量资料采用均数±标准差(±s)表示,P<0.05为差异有统计学意义。
表1 RT-PCR引物序列
基因GAPDH
C6细胞
上游:5' TCCTACCCCCAATGTATCCG 3'下游:5' CCTTTAGTGGGCCCTCGG 3'上游:5' GCACCCAAACCGAAGTCATA 3'
原代星形胶质细胞和小胶质细胞
上游:5' AAATGGTGAAGGTCGGTGTGAAC 3'下游:5' CAACAATCTCCACTTTGCCACTG 3'上游:5' GCTTGAAGGTGTTGCCCTCAG 3'下游:5' AGAAGCCAGCGTTCACCAGAC 3'上游:5' AACTGTCCCTGTTTCTCCTG 3'下游:5' GGAAGGTGGTGGTAAGTTTG 3'
CXCL1
下游:5' GGGGACACCCTTTAGCATCT 3'上游:5' CTTATTGAAAGCGGTGAGCC 3'
CXCL10
下游:5' ACTGGGTAAAGGGAGGTGGA 3'
2 结 果
2.1 脂多糖诱导C6细胞中趋化因子CXCL1和CXCL10的表达 脂多糖(1 μg/mL)刺激C6细胞1 h、3 h、6 h后,与对照组比较,CXCL1 mRNA在1 h,3 h,6 h表达均显著升高,差异均有统计学意义(P<0.001),且在3 h达到最高(图1A)。CXCL10 mRNA在3 h,6 h表达显著升高,在3 h表达最高,与对照组比较,差异均有统计学意义(P<0.05),(图1B)。
2.2 姜黄素对脂多糖诱导的星形胶质细胞中CXCL1和CXCL10表达的影响 (1)在C6细胞中,与对照组比较,脂多糖能诱导CXCL1(P<0.001,图2 A)和CXCL10(P<0.01,图2 B)的表达显著增加;25 μmol/L姜黄素预孵育处理后,能显著抑制脂多糖诱导的
CXCL1(P<0.001,图2 A)和CXCL10 (P<0.001,图2 B)的表达。(2)在原代星形胶质细胞中,与对照组比较,脂多糖能诱导CXCL1(P<0.001,图2 C)和CXCL10(P<0.001,图2 D)的表达显著增加;10 μmol/L(P<0.05,图2 C),25 μmol/L(P<0.001,图2 C)姜黄素预孵育后,显著抑制脂多糖诱导的CXCL1的表达;25 μmol/L姜黄素能显著抑制脂多糖诱导的CXCL10的表达(P<0.001,图2 D)。
2.3 姜黄素对脂多糖诱导的小胶质细胞中CXCL1和CXCL10表达的影响 在原代小胶质细胞中,脂多糖诱导小胶质细胞中CXCL1(P<0.001,图3A)和CXCL10(P<0.001,图3 B)表达的显著增加,25 μmol/L姜黄素预孵育能显著抑制脂多糖诱导的CXCL1(P<0.001,图3 A)和CXCL10(P<0.001,图3 B)的表达。
mL****
P<0.05,P<0.001。 与对照组比较,
mL图1 脂多糖诱导C6细胞中趋化因子CXCL1和CXCL10表达
· 004 ·
交通医学 2019 年第 33 卷第 1 期Med J of Communications,2019,Vol.33,No.1
*****P<0.001,P<0.01; 1:对照组;2:LPS组;3、4、5:分别为CUR 2.5 μmol/L、10 μmol/L、 25 μmol/L + LPS组。与对照组比较,与
###
脂多糖组比较,P<0.001。
图2 姜黄素抑制C6细胞(A、B)、原代星形胶质细胞(C、D)中脂多糖诱导的CXCL1和CXCL10的表达
AB8070605043210CXCL10相对表达量CXCL1相对表达量***25002000150010001086420***######***###P<0.001;P<0.001。 1:对照组;2:LPS组;3:CUR 25 μmol/L + LPS组。与对照组比较,与脂多糖组比较,
1 2 3 1 2 3 图3 姜黄素抑制原代小胶质细胞中脂多糖诱导的CXCL1和CXCL10的表达
3 讨 论
神经炎症反应是阿尔茨海默病、多发性硬化症等疾病最主要的特征,同时伴随着星形胶质细胞和小胶质细胞的激活并释放促炎细胞因子和趋化因子[8],已有很多研究表明姜黄素参与神经炎症反应过程,为神经炎症性疾病的治疗提供了可能[5-6,9]。课题组前期研究发现,在大鼠关节炎模型中,口服或鞘内注射姜黄素能够抑制大鼠脊髓中星形胶质细胞和小胶质细胞的激活,从而减少脊髓胶质细胞相关的炎症介质如白介素1β(interleukin-1β,IL-1β),肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、单核细胞趋化因子1(monocyte chemoattractant protein-1,MCP-1),巨噬细胞炎性蛋白1α(macrophage inflam-matory protein-1α,MIP-1α)的表达,从而减轻神经
炎症反应,达到镇痛的作用[10]。
趋化因子CXCL1和CXCL10都属于CXC超家族成员。课题组前期研究发现,神经损伤或者外周炎症都能够诱导脊髓星形胶质细胞中CXCL1表达的升高,继而与其神经元上受体CXCR2相互作用,介导中枢敏化而参与神经病理性疼痛的维持和慢性炎症性疼痛的发展过程,采用CXCL1中和抗体或CXCL1慢病毒能够减轻疼痛行为[11-12]。趋化因子CXCL10与其受体CXCR3结合后,可调控细胞自噬,细胞生长和增殖,炎症性疾病和癌症发病过程中的血管生成等生物过程[13-16]。课题组前期研究发现,结扎小鼠脊神经后能够诱导小鼠脊髓星形胶质细胞和神经元中CXCL10表达升高,与其神经元上受体CXCR3结合后,增加兴奋性突触传递而参与神经病理性疼痛的维持过程[17]。说明靶向CXCL10的表达将可能成为
交通医学 2019 年第 33 卷第 1 期Med J of Communications,2019,Vol.33,No.1
· 005 ·
神经炎症性疾病治疗的新方法。
本实验观察到脂多糖诱导星形胶质细胞和小胶质细胞中趋化因子CXCL1和CXCL10表达的显著增加,而用25 μmol/L姜黄素预孵育后,均能显著减少脂多糖诱导的星形胶质细胞和小胶质细胞中趋化因子CXCL1和CXCL10表达的增加(P<0.001),而低浓度(2.5 μmol/L、10 μmol/L)姜黄素对脂多糖诱导的CXCL1和CXCL10表达的抑制作用不是很明显,说明在实验中低浓度的姜黄素作用小,需要选择合适的浓度梯度。
综上所述,姜黄素可能通过抑制星形胶质细胞和小胶质细胞中趋化因子CXCL1和CXCL10的表达,参与神经炎症反应的调节,有望为临床治疗神经炎症性疾病提供一种有效、安全的方法。
[参考文献]
[1] Kimelberg HK. Functions of mature mammalian astrocytes:a
current view[J]. Neuroscientist, 2010, 16(1): 79-106.
[2] Kielian T. Microglia and chemokines in infectious diseases of
the nervous system: Views and reviews[J]. Front Biosci, 2004, 9: 732-750.
[3] Cartier L, Hartley O, Dubois-Dauphin M, et al. Chemokine re-ceptors in the central nervous system:role in brain inflammation and neurodegenerative diseases[J]. Brain Res Rev, 2005, 48(1): 16-42.
[4] Murray-Stewart T, Casero RA. Regulation of polyamine me-tabolism by curcumin for cancer prevention and therapy[J]. Med Sci(Basel), 2017, 5(4): E38.
[5] Xie ZL, Wu BB, Shen GZ, et al. Curcumin alleviates liver oxida-tive stress in type 1 diabetic rats[J]. Mol Med Rep, 2018, 17(1): 103-108.
[6] Reddy PH, Manczak M, Yin X, et al. Protective effects of Indian
spice curcumin against amyloid-beta in alzheimer’s disease[J]. J Alzheimers Dis, 2018, 61(3): 843-866.
[7] You J, Sun J, Ma T, et al. Curcumin induces therapeutic angio-genesis in a diabetic mouse hindlimb ischemia model via mod-ulating the function of endothelial progenitor cells[J]. Stem Cell
Res Ther, 2017, 8(1): 182.
[8] Sawikr Y, Yarla NS, Peluso I, et al. Neuroinflammation in alz-heimer’s disease:the preventive and therapeutic potential of poly-phenolic nutraceuticals[J]. Adv Protein Chem Struct Biol, 2017, 108: 33-57.
[9] Sundaram JR, Poore CP, Sulaimee NHB, et al. Curcumin amelio-rates neuroinflammation,neurodegeneration,and memory deficits in p25 transgenic mouse model that bears hallmarks of alzhei-mer’s disease[J]. J Alzheimers Dis, 2017, 60(4): 1429-1442.[10] Chen JJ, Dai L, Zhao LX, et al. Intrathecal curcumin attenuates
pain hypersensitivity and decreases spinal neuroinflammation in rat model of monoarthritis[J]. Sci Rep, 2015, 5: 10278.
[11] Zhang ZJ, Cao DL, Zhang X, et al. Chemokine contribution to
neuropathic pain: respective induction of CXCL1 and CXCR2 in spinal cord astrocytes and neurons[J]. Pain, 2013, 154(10): 2185-2197.
[12] Cao DL, Zhang ZJ, Xie RG, et al. Chemokine CXCL1 enhances
inflammatory pain and increases NMDA receptor activity and COX-2 expression in spinal cord neurons via activation of CX-CR2[J]. Exp Neurol, 2014, 261: 328-336.
[13] Zhang X, Wu WK, Xu WQ, et al. C-X-C motif chemokine 10
impairs autophagy and autolysosome formation in non-alcoholic steatohepatitis[J]. Theranostics, 2017, 7(11): 2822-2836.[14] Tokunaga R, Zhang W, Naseem M, et al. CXCL9, CXCL10,
CXCL11/CXCR3 axis for immune activation - A target for novel cancer therapy[J]. Cancer Treat Rev, 2018, 63: 40-47.
[15] Xu C, Zhang C, Ji J, et al. CD36 deficiency attenuates Im-mune-Mediated hepatitis in mice by modulating the proapop-totic effects of CXCL10 chemokine ligand 10[J]. Hepatology, 2018,67(5): 1943-1955.
[16] Ishiuchi Y, Sato H, Tsujimura K, et al. Skeletal muscle cell
contraction reduces a novel myokine, chemokine (C-X-C motif) ligand 10 (CXCL10): potential roles in exercise-regulated an-giogenesis[J]. Biosci Biotechnol Biochem, 2018, 82(1): 97-105.[17] Jiang BC, He LN, Wu XB, et al. Promoted interaction of C/EB-Palpha with demethylated Cxcr3 gene promoter contributes to neuropathic pain in mice[J]. J Neurosci, 2017, 37(3): 685-700.
[收稿日期] 2018-11-09
因篇幅问题不能全部显示,请点此查看更多更全内容