Jai-chanHwang
DepartmentofAstronomyandAtmosphericSciences,KyungpookNationalUniversity,Taegu,Korea
(February7,2008)Recently,wepresentedaunifiedwayofanalysingclassicalcosmologicalperturbationingeneralizedgravitytheories.Inthispaper,wederivetheperturbationspectrumsgeneratedfromquantumfluctuationsagaininunifiedforms.Weconsiderasituationwhereanacceleratedexpansionphaseoftheearlyuniverseisrealizedinaparticulargenericphaseofthegeneralizedgravity.Wetaketheperturbativesemiclassicalapproximationwhichtreatstheperturbedpartsofthemetricandmatterfieldsasquantummechanicaloperators.Ourgenericresultsincludetheconventionalpower-lawandexponentialinflationsinEinstein’sgravityasspecialcases.
arXiv:gr-qc/9607059v1 24 Jul 1996PACSnumbers:03.65.Sq,04.50.+h,04.62.+v,98.80.Cq
Thehighlyisotropiccosmicmicrowavebackgroundra-diationpermitsalinearparadigmoftreatingthestruc-tureformationprocessintheevolvinguniverse.Itiswidelyacceptedthatthecurrentlyobservablelargescalestructuresaredevelopedfromremnantsofthequantumfluctuationsimprintedduringearlyacceleratedexpan-sionstage.InthecontextofEinstein’sgravityboththequantumgenerationandclassicalevolutionprocessescanberigorouslyhandled;studiesin[1,2]canbecomparedwiththepreviousorderofmagnitudeanalyses[3],oranalysesindifferntgauges[4].Forascalarfield,selfcon-sistentandrigorousanalysesarepossiblemainlyduetoaspecialroleofparticulargaugecondition(orequivalently,gaugeinvariantcombination)whichsuitstheproblem:theuniform-curvaturegauge.
Varietyoftheoreticalreasonsalludepossiblegeneral-izationofthegravitysectorduetoquantumcorrectioninthehighenergylimit,andthusintheearlyuniverse[5,6].Thereweremanystudiesontheclassicalevolutionofstructuresinsomefavoredgeneralizedgravitytheories[7].However,again,intheclassesofgeneralizedgravityinvolvingthescalarfieldandscalarcurvature,wefoundthattheuniform-curvaturegaugesuitstheproblemal-lowingsimpleandunifiedtreatmentpossible[8].Forthegrowingmode,thelargescalesolutionknowninthemin-imallycoupledscalarfieldremainsvalideveninawideclassofgeneralizedgravity.Inthispaperweinvestigatethequantumgenerationprocessinthecontextofgeneral-izedgravity.Theproperlychosengaugeconditionagainallowsustopresentthegeneratedpowerspectrumingenericformswhichareapplicabletovariousgeneralizedgravitytheoriesandunderlyingbackgroundevolutions.Weconsiderthegravitytheorieswithanaction
√1
S=d4xf(φ,R)−
2
H
ϕ≡−
˙φ
2
˙2−a3Zδφϕ
Ha3Z
1
··
H
3
δφ2ϕdtdx.
(5)
Thenon-Einsteinnatureofthetheoryispresentina
parameterZwhichisdefinedas1
Z(t)≡ω+3F˙2
1+
F
˙δφ
˙ϕ−
a3Z
1
Ha3Z
H··
δφϕ=0.
(7)
Inthelargescalelimit,ignoringtheLaplacianterm,we
haveageneralintegralformsolutionδφH2
ϕ(x,t)=−
φ
˙a3Z
φ
˙δφϕ,z(t)≡
aφ
˙Z,(9)
Eq.(7)canbewrittenasv′′−
∇2
z′′+
a
√√
H
ϕ.ˆ(12)
Anoverhatindicatesthequantumoperator.Theback-groundorderquantitiesareconsideredasclassicalvari-ables.Thisapproachhasadifferentspiritcomparedwith
thequantumfieldtheoryincurvedspacetime,whereinthelattercasethemetricsectorisregardedasclassicalandgiven(sometimesconsideringsomeprescribedback-reaction)[6,12].Ourapproachconsidersthefieldandthemetricinequalfooting[11].Sinceweareconsideringflatthree-spacebackgroundwemayexpandδφ
ˆa
(x,t)inthefollowingmodeexpansion
δφˆϕ(x,t)=
d3ka3Z
δ3(x−x′).
(15)
InorderforEq.(14)tobeinaccordwithEq.(15),themodefunctionδφϕk(t)shouldfollowtheWronskiancondition
δφ˙∗−δφ∗δφi
ϕkδφϕkϕk
˙ϕk=π|η|
√
n+
1
adiabaticvacuum(indeSitterspaceitisoftencalledasBunch-Daviesvacuum,[13])choosesc2(k)≡1andc1(k)≡0whichcorrespondstothepositivefrequencysolutionintheMinkowskispacelimit.ThepowerspectrumbecomesPδφˆϕ(k,t)≡
k3
|δφϕk(t)|2
2π2
,
(20)
whereweusedaadiabaticvacuum,k|vacthetwo-point≡0foreveryfunctionk.becomesAssumingtheG(x′
,x′′
)≡δφˆϕ(x′)δφˆϕ(x′′)(1vac=
×F16πa′a′′η′η′′
32
−ν;2;1+
∆η2−∆x2
√2;
x≡(x,t),∆η2∆x2≡(x′−x′′)2.
≡(η′−η′′)2and
Inthesmallscalelimit,thuskη≫1,(18)becomes
δφ1ϕk(η)=
2k
c(k)eikη−i(ν+112+c2(k)e
−ikη+i(ν+12
Inthelarge-scalelimitwehave
1
Z
.(22)δφϕk(η)=ia2√2−νc2(k)−c1(k)
1
Z
,(23)andthepowerspectrumbecomes
P1/2
Γ(ν)δφˆϕ
(k,η)=23/2−νc2(k)−c1(k)1Z
.(24)
InEqs.(18-24)noadditionaldependenceonkarises
fromthegeneralizednatureofthetheory.
LetusseetheimplicationoftheconditioninEq.(17).Introducethefollowingnotations
ǫH˙1≡Hφ˙,ǫ1
3≡
HF,ǫ14≡
HE
,
E≡F
ω+
3F
˙21aH
1
z
=
n
η2
3(1+w),
wehave
ǫ1=−1/qanda∝η2/(1+3w).InthelimitofEinstein’sgravity,thusZ=1,thesolutionsinEqs.(18-24)reducetotheonesderivedin§IIIof[1],[13,14].Forapower-lawexpansionstagesupportedbythescalarfieldgravity,wehaveǫ3=0=ǫ4andφ/H˙inEinstein’s
=constant.Thus,
ǫ1=ǫ2=−1/qandEqs.(18,27)leadto
ν=
3q−1
2(3w+1)
.(28)
w<−1
2;
inthis
casewehaveη=−1/(aH)whereHbecomesaconstant.Now,wederivesomeobservationallyrelevantclassicalpowerspectrumsgeneratedfromquantumfluctuationsastheinitialseeds.Ignoringthetransientmode,fromEq.(8)wehave
P1/2
C(k,t)=
H
2π2
Wehaveinmind
f(x+r,t)f(x,t)xe−ik·rd3r.
(30)
agenericscenariowheretheclassicalstructuresarisefromthequantumfluctuationspushedoutsidehorizonandclassicalizedduringacceleratedex-pansionstage.Asanansatzweidentify
Pδφϕ(k,t)=Q(k,t)×Pδφˆϕ(k,t),
(31)
wherePδφandPandthequantumδφˆarebasedontheclassicalvolumeaveragevacuumexpectationvalue,re-spectively,Eqs.(30,20).Q(k,t)isafactorwhichmaytakeintoaccountofthepossiblemodificationofthespec-trumduetotheclassicalizationprocessofthequantumfieldfluctuations.Wemaycallita“classicalizationfac-tor”.Ordinarilyitistakentobeunity,however,thedecoherence,noiseandnonlinearfieldeffectsmayaffectitsvalue,particularlyitsamplitude,[15].AssumingEq.(17)wehavederivedthequantumfluctuationsinthelargescalelimitinEq.(24).Thus,combiningEqs.(29,31,24)wehave
P1/2
=
H
k|η|C(k,η)π3/2a|η|
Q(k)
wherequantitiesintherighthandsideshouldbeevalu-atedwhenthescaleweareconsideringwasinthelargescalelimit(LS)duringanexpansionstagesupportedbyageneralizedgravitytheory(GGT).IntheEinsteingrav-itylimit(Z=1)andanexponentialexpansion(EXP)stage[ν=3
H2π
2
Wenotethatingeneralthepowerspectrumdependsonthechoiceofavacuumstateandpossiblyontheclassi-calizationfactorQ(k).
Now,inEq.(32)wehavethe“quantumfluctuationgeneratedpowerspectrum”imprintedinaconservedquantityC(x).FromthepowerspectrumofC(x)wecanderivethespectrumsofobservablequantitiesinthepresentuniverse,e.g.,densityfluctuations,velocityfluc-tuations,potentialfluctuations,andtemperaturefluctu-ationsinthecosmicmicrowavebackgroundradiationinthematterdominatederainEinstein’sgravity;theseare[8]
δ̺
55k
5
δT
5C.
k
(34)
Q(k)
theconditioninEq.(17).Constructingspecificmodelswithapplicationswillbeconsideredelsewhere.
WethankDr.H.Nohforusefuldiscussions.ThisworkwassupportedinpartbytheKoreaScienceandEn-gineeringFoundation,GrantsNo.95-0702-04-01-3andNo.961-0203-013-1,andthroughtheSRCprogramofSNU-CTP.
.(33)
LS,EXP
C,
Noticethatweareconsideringalineartheory.Inthelineartheory,allperturbedorderquantitiesarelinearlyrelatedwitheachotherwhichistrueevenbetweenvari-ablesindifferentgauges.C(x)isatemporallyconstant,butspatiallyvarying,coefficientofthegrowingmode.Thespatialcurvature(orpotential)fluctuationintheuniform-fieldgauge(whichcoincideswiththecomovinggauge[CG]inaminimallycoupledscalarfield,seeSec.IVCof[9])isconservedasC(x);i.e.,ϕδφ(x,t)=C(x)=ϕCG(x,t).C(x)encodesthespatialstructureofthefluc-tuationsandisconservedduringthelinearevolutioninthelargescalelimit.Indeed,thislinearityisonebasicunderlyingreasonwhyweweresuccessfulintracingthestructureevolutioninasimpleandunifiedway.How-ever,apparently,therearisesnostructureformationinthelineartheory[structuresarepreservedinC(x)],andoneshouldnotmissthatthegravitytheoriesarehighlynonlinear.
Inthispaperwehavenotusedtheconformaltransfor-mationwhichrelatesthegeneralizedgravityinEq.(1)toEinstein’sgravityinclassicallevel,[10].Quantumfluctu-ationsarederivedintheoriginalframeofthegeneralizedgravity.Still,theunderlyingconformalsymmetrywithEinstein’sgravitycanberegardedasanimportantfactorwhichallowstheunifiedandsimpleanalysespossibleintheclassicallevel,[10].
Wehaveimplictlyassumedtheexistenceofanacce-larationstagesupportedbythegeneralizedgravitywith
37,2099(1988);V.Sahni,Class.Quant.Grav.5,L113(1988).
[15]E.CalzettaandB.L.Hu,Phys.Rev.D52,6770(1995).
5
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- haog.cn 版权所有 赣ICP备2024042798号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务