您好,欢迎来到好走旅游网。
搜索
您的当前位置:首页英文翻译-1

英文翻译-1

来源:好走旅游网
ProcessBiochemistry44(2009)516–520ContentslistsavailableatScienceDirect

ProcessBiochemistry

journalhomepage:www.elsevier.com/locate/procbio

SpecificactivityandviabilityofNitrosomonaseuropaeaduringdiscontinuousandcontinuousfermentation¨vena,*,IngoSchmidtbDidemGuab¨yu¨kcFatihUniversity,FacultyofEngineering,EnvironmentalEngineeringDepartment,34500Bu¸ekmece,Istanbul,TurkeyIngoSchmidtUniversityofBayreuth,DepartmentMicrobiology,Universitaetsstrasse30,95447Bayreuth,GermanyARTICLEINFOABSTRACTArticlehistory:

Received19August2008Receivedinrevisedform5November2008Accepted13January2009Keywords:NitrosomonaseuropaeaSpecificactivityViabilityCultivationGrowthphaseFermentationTheenergyconservationandnumberofviablecellsofNitrosomonaseuropaeafluctuatedramaticallyduringcultivation.Indiscontinuousculturethespecificactivity(SA)reachesitsmaximumafter9hwithabout2700nmolO2(mgprotein)À1minÀ1,wherethehighestnumberofviableN.europaeacellsisdetectableafter21hwith2Â108cellmlÀ1.Afterwards,bothSAandviablecellnumberimmediatelystarttodecrease.Accordingly,theexponentialgrowthturnsintoalineargrowth,wherebythenumberofviablecellspermanentlydecreases.Theexponentialgrowthphasecanbeextendedfromabout21to38hbyincreasingtheconcentrationofCO2ortraceelements.IncontinuousfermentationofN.europaea,SAofabout2500nmolO2(mgprotein)À1minÀ1andviablecellnumberof2.5Â108cellmlÀ1isdetectableatdilutionratesbetween1and1.8dayÀ1.Atdilutionratesbelow1dayÀ1,SAandnumberofviablecellsarereduced.Theminimaldoublingtimeis13and15hduringcontinuousanddiscontinuousfermentation,respectively.Consequently,cellproductionofN.europaeashouldbeperformedincontinuousfermentation.Whenbacteriaaregrownindiscontinuoussystems,theyshouldbeharvestedintheearlyexponentialgrowthphase.ß2009ElsevierLtd.Allrightsreserved.1.IntroductionThenitrifierN.europaeaobtainsenergyfromtheaerobicoranaerobicoxidationofammoniatonitriteandCO2servesasitscarbonsource[1–6].Theinitialreaction,theformationofhydroxylamine,iscatalyzedbytheammoniamonooxygenase(AMO)[2,3,7,8].Inthesecondstep,hydroxylamineisoxidizedtonitritebythehydroxylamineoxidoreductase(HAO)[6].TwoofthefourelectronsreleasedfromtheoxidationofhydroxylaminearerequiredfortheinitialAMOreaction,whiletheothertwoareemployedinthegenerationofaprotonmotiveforceinordertoregenerateATPand,viaareverseelectrontransport,NADH[6].Ammoniaoxidizersplayanimportantroleintheglobalnitrogencycleandarekeyorganismsinthetreatmentofindustrialanddomesticwastewater[9–12].Theyhavebeenfoundinmanyecosystemslikefreshwater,saltwater,sewagesystems,andsoils[13,14],aswellasinanoxicenvironments[15,16].Asignificantamountoftheenergyobtainedfromoxidationofhydroxylaminehastobeinvestedinammoniaoxidation(AMO),reverseelectrontransporttogenerateNADH,andCO2fixation.Asaconsequence,growthratesofN.europaeaarerelativelylow.Growthratesof0.94and0.41dayÀ1werereportedforcontinuous*Correspondingauthor.Tel.:+902128663300x5613;fax:+902128663412.¨ven).E-mailaddress:dguven@fatih.edu.tr(D.Gu1359-5113/$–seefrontmatterß2009ElsevierLtd.Allrightsreserved.doi:10.1016/j.procbio.2009.01.005anddiscontinuouscultures,respectively[17].Inotherstudiesgrowthratesof0.43[18],0.58[19],and3dayÀ1[20],anddoublingtimesof8[21]or10–24h[17]weremeasured.Ammoniumconcentrationsbetween2and50mM,pHvaluesbetween7.2and7.6,oxygenconcentrationsbetween1and6mglÀ1,andtempera-turesbetween28and358CwerereportedtobeoptimaltogrowN.europaea[17,21–28].Indifferentstudieseitherthespecificammoniaoxidationoroxygenconsumptionactivitywererecorded.Thespecificactivity(SA)ofN.europaeaindiscontinuousculturedifferedbetween300and1670nmolO2(mgprotein)À1minÀ1[17],infed–batchsystemsbetween600and1500nmolO2(mgprotein)À1minÀ1,andincontinuousfermentationwithbiomassretentionbetween240and900nmolO2(mgprotein)À1minÀ1atdilutionratesbetween0.05and0.1hÀ1[29,30].Interestingly,celldensityofNitrosomonasculturesseemstobelimited.Indiscontinuousculturesthetotalcellnumberhardlyincreasedabove5Â108cellsmlÀ1[30]andthemaximumcellnumberincontinuouscultureswithcompletebiomassretentionwasapproximately2Â1010cellsmlÀ1inthepresenceof50ppmNO2[30].TheaccumulationoftheendproductnitritewassuggestedtoinhibitgrowthandtolimitthecellnumberofN.europaea[31].Thelimitedcelldensitymakesitdifficulttoproducesignificantamountsofbiomass[17,29,32,33].ThecultivationtechniquesforbiomassproductionofthemodelbacteriumN.europaeadiffersignificantlywithregardtoappliedfermentorsystems(discontinuous,continuous),ammo-¨ven,I.Schmidt/ProcessBiochemistry44(2009)516–520D.Gu517

niumconcentrations,pHvalues,oxygenconcentrations,andtemperatures.N.europaeaisusuallygrownindiscontinuousfermentorsystems(oftenErlenmeyerflasks)andbacteriaareharvestedbetweenlategrowthandearlystationaryphase.Asaresultofcultivationdifferentqualitiesofbiomassareproduced.Thecatabolicactivity(ammoniumoroxygenconsumption)andviabilityfluctuatesignificantly,influencingtheresultsofexperi-mentsperformedwiththesebacteria.Togeneratereproducibleandcomparableresults,ahomogenousbiomasswithknownSAandviability,preferentiallywithmaximumSAandviability,isrequiredinsufficientquantities.Thegoalofthisstudywastoverifythecorrelationofgrowthconditionsduringbiomassproductionandactivity/viabilityofthebacteria.DiscontinuousandcontinuousfermentorsystemswereappliedandSAandviabilityofN.europaeaweremeasuredinallgrowthphases.Theinfluenceofgrowthfactorslikeammonium,oxygen,CO2,andtraceelementsonactivityandviabilitywereexamined.Theresultsopenthepossibilitytoproduceahomo-genousN.europaeabiomasswithoptimalanddefinedactivityandviability.2.Materialsandmethods2.1.MicroorganismandgrowthconditionsStockculturesofN.europaea(ATCC19718)weregrownaerobicallyin1-l-Erlenmeyerflaskscontaining400mlmineralmedium[4].Theculturesweregrowninthedarkat288Cshakingat50rpm.Theywereharvestedduringthelateexponentialgrowthphaseandwereusedasinoculum(20%ofthetotalvolume)forcontinuousanddiscontinuousfermentations.2.2.Experimentaldesign2.2.1.DiscontinuousfermentationN.europaeawasgrowninafermentorof30ltotalvolume(modelBiostat,Braun)suppliedwith20lmineralmediumcontaining75mMammoniumunderdiscontinuousconditions.Airwassuppliedataflowrateof0.2–5lairminÀ1tomaintainadissolvedoxygenconcentrationof5Æ1mglÀ1.Temperaturewas298CandpHwaskeptat7.3employing20%(w/v)Na2CO3.Samplesforoff-linedeterminationofSAandcellnumberaswellasammoniumandnitriteconcentrationweretakenwithinregulartimeintervals.Celldensity(bacterialgrowth)wasmonitoredat578nminaspectrophotometer.Cultureswerealwayskeptinthedark.AsubstrateinhibitionofN.europaeawasnotobservedatammoniumconcentrationsbelow150mMandnitriteasaproductwasnotinhibitoryinconcentrationsupto100mM.

2.2.2.ContinuousfermentationN.europaeawasgrowninafermentorof12ltotalvolumesuppliedwith10lmineralmediumundercontinuousconditions.Airwassuppliedataflowrateof0.1–3lairminÀ1tomaintainadissolvedoxygenconcentrationof5Æ1mglÀ1.Temperaturewas298CandpHwaskeptat7.3employing20%(w/v)Na2CO3.Thedilutionratewasvariedbetween0.1and2.2dayÀ1andfreshmineralmedium(55mMammonium)wascontinuouslyaddedviaaperistalticpump.Inthefermentortheammoniumconcentrationwaskeptbelow5mM.

2.2.3.AnalyticalproceduresAmmoniumwasmeasuredaccordingtoSchmidtandBock[4],nitriteandnitrateaccordingtoVandeGraafetal.[34],andproteinaccordingtoBradford[35].TheoxygenconsumptionwasmeasuredandtheSAofthebacteriawascalculatedasoxygenconsumptionpermgproteinandminute.OxygenconcentrationwasmeasuredinaClarkCellTypeOxygenMembranePolarographicDetector(O2-MPD,RankBrothersLtd.,Cambridge,England).TotalcellnumberwasdeterminedbylightmicroscopyusingaHelberchamber(S.D.10%).Todetermineviablecellnumber,MPNassayswereperformedbypreparingserial10-folddilution(1to10À10)andtransferringdilution10À5to10À10eachinfiveglasstubeswithmineralmedium[4].Thetubeswereincubatedonarotaryshaker(100rpm)at308C.After3and6weeksthetubesweretestedfornitriteproduction.NitritewastakenasindicationforthepresenceofviablecellsofN.europaeaandtheresultswereusedtocalculatetheviablecellnumber(S.D.22%).TheMPNmethodtendstounderestimatethecellnumber,especiallywhenbacteriaformaggregates.Inthisstudy,cellsuspensionswithplanktonicsinglebacteriawereanalyzed.ThemaximumcellnumbermeasuredviaMPNwasalmostashighasthetotalcellnumber(Helberchamber),givingevidencethatanunderestimationofviablecellnumberdidnotoccur.3.Resultsanddiscussion3.1.ActivityandviabilityofN.europaeaduringdiscontinuousfermentationInitialexperimentsweredesignedtoinvestigateSAandviabilityofN.europaeaduringdiscontinuousfermentation.Thefermentorwasinoculatedwith1.2Â108N.europaeacellsmlÀ1.AfterinoculationtheSAincreasedsignificantlyreachingitsmaximumof2700nmolO2(mgprotein)À1minÀ1after9h(Fig.1a).Thetotalcellnumberstartedtoincreaseafterinoculation,butthenumberofviablecellsincreasedsignificantlyfasterandtheratioofviabletototalcellschangedfromabout0.02(0h)to0.95(18h)(Fig.1a).At9htheSAandat18hthenumberofviablecellsreachedtheirrespectivemaximumandstartedtodecreaseafterwards.Therefore,‘‘fittest’’bacteriawithregardtoSAandviability(generationtimeofabout15h)werepresentinearlyexponentialgrowthphase.Inlategrowthphaseandearlystationaryphase,SAandviabilityofthebacteriaweresignifi-cantlyreduced(Fig.1a).Inotherstudies,SAofabout1500nmolO2(mgprotein)À1minÀ1[29]and1670nmolO2(mgprotein)À1minÀ1[17]werereported.Thedatafitsresultspresentedinthisstudy,whereaSAofabout1500nmolO2(mgprotein)À1minÀ1wasdetectableinearlystationaryphase(Fig.1a).N.europaeareachedstationaryphasewithin50h(Fig.1).Ammonium(76mM)wasmainlyconvertedintonitrite(about60mMnitritewereproduced)(Fig.1b).Nitratewasnotdetectable.Onlyabout1%oftheconsumedammoniumisincorporatedintobiomass[36].Therefore,thedifferencebetweenconsumedammoniumandproducednitritewasmainlyconvertedintogaseousN-compounds(N-loss;[37])andN-losswasapproxi-mately20%.Fig.1.N.europaeagrowninafed–batchfermentationfor48hina30-l-laboratoryscalefermentor.(a)Totalcellnumber(~),viablecellnumber(~),andspecificactivity(*);(b)ammonium(&)andnitrite(^)concentrationinthefermentor.518¨ven,I.Schmidt/ProcessBiochemistry44(2009)516–520D.GuProductionofN.europaeaindiscontinuousfermentationhastwomajordisadvantages.First,highestSAandviabilityofthebacteriawereobservedinearlyexponentialgrowthphase(Fig.1a).Atthismomentoffermentationtheamountofbiomasswaslowandharvestingbacteriaforfurtherexperimentsorapplicationswouldonlyprovidesmallamountsofbiomass.Anincreasedfermentorvolumewouldberequiredtocompensateforthelowbiomassconcentration.Second,highestSAwasalwaysdetectablebeforethenumberofviablecellsreacheditsmaximum.Asaconsequence,itisnotpossibletogenerateN.europaeabiomasswhichhasoptimalSAandviability.3.2.GrowthlimitingfactorsforN.europaeaduringdiscontinuousfermentationExponentialgrowthphaseofN.europaeaindiscontinuousculturewasshort,becausethenumberofviablecellsdecreased(Fig.1a),andwasfollowedbyanon-exponential(linear)growthphase.Itwasassumedthatagrowthlimitingfactorcausedtheendofexponentialgrowth.Aseriesofdiscontinuousfermentation’swereperformedtoidentifygrowthlimitingfactorsandtoverifywhethergrowthcanbeimproved(extendedexponentialgrowthphase)bychangingthesegrowthfactors.Ammoniumandoxygen(energyconservation),CO2(assimilation),traceelements(saltsandmetals),andnitrite(toxicproduct)concentrationswerevariedandtheeffectonlagandexponentialgrowthphaseaswellasontheratioofviabletototalcellnumberwasdetermined(Table1).FromdatapresentedinTable1,itisevidentthatthedurationoflagphasewassimilarunderstandardconditionsaswellasinthepresenceofincreasedCO2,traceelements,orammoniumconcentration.Lagphasewasextendedwhennitritewasremovedfromthemediumoroxygenconcentrationwasincreased.Thelongestexponentialgrowthphasewasobtainedwhenthecellsuspensionwasaeratedwithairsupplementedwith3%CO2.Alsoaerationwithaircontaining0.5%CO2orapplicationofmediumwithanincreasedconcentrationoftraceelementsledtoaprolongedexponentialgrowth.Highestviablecellnumber(4.5Â108cellmlÀ1)andhighestratioofviabletototalcells(0.92Æ0.03)wereobtainedattheendofexponentialgrowthphasewhenthefermentorwasaeratedwithanair–CO2(97:3%)mixture(Table1).Increasedammoniumortraceelementconcentrationsledtoanextendedexponentialgrowthphase,aswell.Increasing

ammoniumconcentrationresultedinanextendedexponential,butmainlyinalongernon-exponentialgrowthphase.ToxiceffectsofnitriteonactivityandgrowthofN.europaeawerereported[31,33],butcouldnotbeverifiedinthisstudy.Incontrast,alownitriteconcentrationduringfermentationresultedinalongerlagandshorterexponentialgrowthphase(Table1).TheremovalofnitriteduringcultivationprohibitedaerobicdenitrificationofN.europaea.DenitrificationhadbeenshowntocontributetoenergyconservationofN.europaea[30,38]andremovalofnitritenegativelyaffectedgrowthofthebacterium(Table1;[30]).

3.3.ActivityandviabilityofN.europaeaduringcontinuousfermentationDuringdiscontinuousfermentationbacteriahadhighestSAandviabilityinearlyexponentialgrowthphase.Attheendofexponentialgrowththebiomassconcentrationwashigh,butSAandviabilitywerenotoptimal.Continuousfermentationwastestedasanoptiontosolvetheproblemsofdiscontinuousfermentation.Acontinuousfermentorwasoperatedatdilutionratesof0.3,0.65,or1.18dayÀ1,andSAandviabilityofN.europaeawereinvestigated.Atthelowestdilutionrate,SAwasonlyatabout1000nmolO2(mgprotein)À1minÀ1(Fig.2a)andtheproportionofviablecellswaslow(ratioofviabletototalcellsabout0.3).Increasingthedilutionrateto0.65dayÀ1,SAwasstronglyincreasedandwithabout2300nmolO2(mgprotein)À1minÀ1almostreachingthehighestvaluesobservedindiscontinuousfermentation.Never-theless,theratioofviabletototalcells(about0.6)wasstillsignificantlybelowthehighestvalueindiscontinuousfermentation(0.9).Furtherincreasingthedilutionrateto1.18dayÀ1,SAwasonlyslightlyincreased(2500nmolO2(mgprotein)À1minÀ1),buttheratioofviabletototalcellsreachedavalueofabout0.9(Fig.2a).Hence,adilutionrateof1.18dayÀ1weresuitabletoproducebacteriawhichhadapproximatelythesamequalitywithregardtoSAandviabilityasbacteriainearlyexponentialgrowthphaseduringdiscontinuousfermentation.Throughoutfermentationammoniawasconvertedmainlyintonitrite(Fig.2b).Nitratewasnotformed.From55mMammonium,onaverage45mMnitritewasproduced.TheN-losswasabout18%,whereaswithincreasingdilutionratethenitriteconcentrationdecreasedandconsequentlytheN-lossincreased(approximately24%atdilutionrateof1.18dayÀ1)(Fig.2b).Table1OptimizationofN.europaeagrowthinafed-batchfermentationbyvaryingtheCO2supplementation,traceelement,nitrite,ammoniumoroxygenconcentration.Thedurationofthelag,exponentialandnon-exponentialgrowthphasearegivenaswellasthemaximumtotalandviablecellnumber.Theresultsaremeanvaluesofthreereplicatedexperiments.Cellnumber:S.D.forthetotalcnwasÆ6%,forthelivingcellnumberÆ14%(MPN).GrowthconditionLagphase(h)4Æ14Æ13Æ14Æ13Æ16Æ212Æ4

Exponentialgrowthphase(h)21Æ228Æ234Æ424Æ317Æ38Æ2

0Non-exponentialgrowthphase(h)26Æ310Æ18Æ124Æ254Æ1248Æ1095Æ15

Maximumviablecna(Â108cnmlÀ1)2.02.94.52.31.50.9n.d.Ratioofviabletototalcnb(cnmlÀ1)0.81Æ0.040.88Æ0.030.92Æ0.030.73Æ0.040.69Æ0.050.70Æ0.04n.d.Maximumtotalcnc(Â108cnmlÀ1)4.14.04.53.97.93.12.7Ratiooflivingtototalcnd(cnmlÀ1)0.22Æ0.040.85Æ0.07n.d.0.35Æ0.050.29Æ0.040.25Æ0.020.1Æ0.04

Standard+CO2e+CO2f+Traceelementsg+NH4+hÀNO2Ài+O2jcn:cellnumber;n.d.:notdetermined.aThemaximumlivingcellnumberwasdetectableattheendoftheexponentialgrowthphase.bTheratiobetweenlivingandtotalcellnumberwascalculatedattheendoftheexponentialgrowthphase.cThemaximumtotalcellnumberwasdetectableattheendofthenon-exponential(linear)growthphase.dTheratiobetweenlivingandtotalcellnumberwascalculatedattheendofthenon-exponential(linear)growthphase.eTheCO2concentrationintheairappliedtoaeratethefermentorcontained0.5%CO2.fTheCO2concentrationintheairappliedtoaeratethefermentorcontained3%CO2.gThetraceelementconcentrationinthemediumwasdoubled.AthreetimesincreasedtraceelementconcentrationledtolongerlagphaseandasignificantslowergrowthofN.europaea.hTheammoniumconcentrationatthestartofthefermentationwasdoubledto150mM.iNitritewasremovedbycross-flowfiltration.Nitriteconcentrationinthefermentorwasalwaysbelow0.2mM.jTheoxygenconcentrationwasadjustedat7.5Æ0.5mgmlÀ1.

¨ven,I.Schmidt/ProcessBiochemistry44(2009)516–520D.Gu519

Fig.2.N.europaeagrowninachemostatfor1032h.0–240hadaptationofthechemostattoadilutionrateof0.3dayÀ1,240–456hsteadystate0.3dayÀ1;456–624hadaptationto0.65dayÀ1,624–792hsteadystate0.65dayÀ1;792–912hadaptationto1.18dayÀ1,912–1032hsteadystate1.18dayÀ1.(a)Totalcellnumber(~),viablecellnumber(~)andspecificactivity(*);(b)ammonium(^),nitrite(&)andO2(*)concentrationinthefermentor.Thechemostatwasstartedwithabout20mMammonium.Thenitriteconcentrationatthebeginningoftheexperimentoriginatedfromthepre-culture(20%inoculum).Thechemostatwasthenoperatedwithamediumcontaining55mMammoniumwithoutnitrite.Adifficultyinthestart-upofacontinuousfermentorbecameobviouswhensystemswereimmediatelystartedatdilutionratesabove1dayÀ1(Fig.3).Inthefirst100h,SAincreasedtoamaximumvalueof2900nmolO2(mgprotein)À1minÀ1,butdidnotstabilizeonthislevelanddecreaseddramaticallyinthefollowing48halongwithadecreaseofthetotalcellnumber(wash-outofbacteria).DuringfermentationanN-lossupto40%wasdetectable(Fig.3).HighN-lossesareanindicationforanunbalancedgrowthandusuallyN.europaeacellsdiewithinashortperiodoftime(4–6days)([30];Fig.3).Obviously,N.europaeacellswerenotabletomaintaininasystemstartingatahighdilutionrate.Torecoverthesystem,thefermentorwasturnedintoadiscontinuousoperationfor20h(betweenhours175and195)tokeepthebiomassinthefermentorandtoverifywhetherviablecellswerestillpresentwhichisindicatedbyanincreasingcellnumber(Fig.3).Thenthefermentorwasturnedbackintocontinuousoperationwithadilutionrateof0.35dayÀ1.DuringthisperiodtheSAslowlyincreasedtoÀ1À1730nmolO2(mgprotein)min.Increasingthedilutionrateto0.6dayÀ1resultedinafurtherincreasedSAtoabout970nmolO2(mgprotein)À1minÀ1.Changingthedilutionrateto0.9dayÀ1for5daysandthento1.3dayÀ1,bacteriarecoveredactivityandviabilitycompletely.Simultaneouslywiththeactivitytheproportionofviablecellsincreasedfrom0.1(260h),0.3(413h),0.4(559h),0.7(603h),to0.9(0.9h).Therefore,recoveryofSAinthefermentorsystemwasmainlyduetotheremoval(wash-out)ofinactivebiomass.Fig.4.Chemostatsinsteadystateconditionsatdifferentdilutionrates.Totalcellnumber(~),doublingtimeofthetotalcellnumber(^),andSA(&).Calculatingtheactivityonthebasisofproteincontentofviablecells,optimalSA(about2300nmolO2(mgprotein)À1minÀ1)wasalreadyrecoveredbetween400and450hofthecontinuousfermentation(Fig.3).Anyhow,theresultsshowtheimportanceofstart-upconditionstoobtainnotonlyhighlyactive,butalsoviableandconstantlygrowingN.europaeacells.FurthercontinuousfermentationswereperformedtoevaluatesuitabledilutionratestogrowN.europaeawithoptimal(highest)SA(Fig.4).Dilutionratesbetween1and1.8dayÀ1provedtogeneratebiomasswithspecificactivitiesabove2500nmolO2(mgprotein)À1minÀ1.Aminimaldoublingtimeof0.55daywasobservedforN.europaeainthiscontinuoussystem(generationtimeofabout13h).AtlowerdilutionratestheSAwassignificantlybelowoptimumandathigherdilutionratesthebacteriacouldnotfurthergrowfasterandwerewashed-out.4.ConclusionsTheresultsofthisstudyshowthatitispossibletoproducemaximumactiveorviablecellsofN.europaeaindiscontinuousfermentation,especiallywhengrowthlimitingfactorshavebeenidentifiedandgrowthconditionswereoptimized.Unfortunately,optimalactivityandviabilitywereneverobservedatthesametime.Furthermore,theproducedamountofbiomasswaslimitedindiscontinuousfermentation,becauseitmustbeharvestedinearlyexponentialgrowthphase.Incontinuousfermentationbiomassofoptimalquality(specificactivityandviability)wasproducedinhighamountsandbacteriaFig.3.N.europaeagrowninachemostatfor680h.0–100hdilutionrateof1.18dayÀ1,100–175hwash-out;175–195hbatchmode,195–440hdilutionrateof0.35dayÀ1;440–560hdilutionrateof0.6dayÀ1;550–600hdilutionrate0.9dayÀ1;600–680hdilutionrateof1.3dayÀ1.Specificactivity(~),dilutionrate(À),andN-loss(*).520¨ven,I.Schmidt/ProcessBiochemistry44(2009)516–520D.Guwereavailablewheneverrequired.Modificationofthedilutionratefurtherallowedcontroloverthequality(specificactivity,viability)ofthebacteria.Adisadvantageofacontinuousfermentationisthesignificantlyhighertechnicaleffortthatisrequiredtooperatesuchfermentorsystems.Acknowledgements

AfellowshipfromtheDAADwasgrantedtoDidemGu¨ven.WethankMatthiasSchlotterforexcellenttechnicalassistance.References[1]ArpDJ,SteinLY.MetabolismofinorganicNcompoundsbyammonia-oxidizingbacteria.CritRevBiochemMolBiol2003;38:471–95.[2]AndersonKK,HooperAB.O2andH2OareeachthesourceofoneOinNO2ÀproducedfromNH3byNitrosomonas;15N-NMRevidence.FEBSLett1983;164:236–40.[3]DuaRD,BhandariB,NicholasDJD.StableisotopestudiesontheoxidationofammoniatohydroxylaminebyNitrosomonaseuropaea.FEBSLett1979;106:401–4.[4]SchmidtI,BockE.AnaerobicammoniaoxidationwithnitrogendioxidebyNitrosomonaseutropha.ArchMicrobiol1997;167:106–11.[5]ReesM,NasonA.IncorporationofatmosphericoxygeninnitriteformedduringammoniaoxidationbyNitrosomonaseuropaea.BiochimBiophysActa1966;113(2):398–401.[6]ArcieroDM,HooperAB.Evidenceforacrosslinkbetweenc-hemeandalysineresidueincytochromeP460ofNitrosomonaseuropaea.FEBSLett1997;410:457–60.[7]HymanMR,WoodPM.Suicidalinactivationandlabellingofammoniamono-oxygenasebyacetylene.BiochemJ1985;227(3):719–25.[8]HymanMR,ArpDJ.Anelectrophoreticstudyofthethermal-dependentandreductant-dependentaggregationofthe28kDacomponentofammoniamonooxygenasefromNitrosomonaseuropaea.Electrophoresis1993;14:619–27.[9]HenzeM.Theoriesforestimationofthefractionofdenitrifiersincombinednitrifying–denitrifyingtreatmentplants.WaterRes1987;21(12):1521–4.[10]SiegristH.Nitrogenremovalfromdigestersupernatant—comparisonofche-micalandbiologicalmethods.WaterSciTechnol1996;34:399–406.[11]So¨zenS,OrhonD,SanHA.Anewapproachfortheevaluationofthemaximumspecificgrowthrateinnitrification.WaterRes1996;30(7):1661–9.[12]JettenMSM,HornSJ,vanLoosdrechtMCM.Towardsamoresustainablemunicipalwastewatertreatmentsystem.WaterSciTechnol1997;35(9):171–80.[13]BockE,WagnerM.Oxidationofinorganicnitrogencompoundsasanenergysource.In:DworkinM,FalkowS,RosenbergE,SchleiferK-H,StackebrandtE,editors.Theprokaryotes.4thedn.,NewYork:Springer-Verlag;2002.[14]BotheH,JostG,SchloterM,WardBB,WitzelK-P.Molecularanalysisofammoniaoxidationanddenitrificationinnaturalenvironments.FEMSMicro-biolRev2000;24:673–90.[15]WeberS,StubnerS,ConradR.Bacterialpopulationscolonizinganddegradingricestrawinanoxicpaddysoil.ApplEnvironMicrobiol2001;67:1318–27.[16]AbeliovichA.Transformationsofammoniaandtheenvironmentalimpactofnitrifyingbacteria.Biodegradation1992;3:255–64.[17]KeenGA,ProsserJI.Steadystateandtransientgrowthofautotrophicnitrifyingbacteria.ArchMicrobiol1987;147:73–9.[18]GloverHE.Therelationshipbetweeninorganicnitrogenoxidationandorganiccarbonproductioninbatchandchemostatculturesofmarinenitrifyingbacteria.ArchMicrobiol1985;142:45–50.[19]YoshiokaT,TeraiH,SaijoY.Growthkineticstudiesofnitrifyingbacteriabytheimmunofluorescentcountingmethod.JGenApplMicrobiol1982;28(2):169–80.[20]SatoC,SchnoorJL,McDonaldDB,HueyJ.TestmediumforthegrowthofNitrosomonaseuropaea.ApplEnvironMicrobiol1985;49(5):1101–7.[21]SkinnerFA,WalkerN.GrowthofNitrosomonaseuropaeainbatchandcon-tinuousculture.ArchMicrobiol1961;38:339–49.[22]BeyerS,GilchS,MeyerO,SchmidtI.TranscriptionofgenescodingformetabolickeyfunctionsinNitrosomonaseuropaeaduringaerobicandanae-robicgrowth.JMolMicrobiolBiotechnol2008.doi:10.1159/000142531.[23]BockE,KoopsH-P,HarmsH,AhlersB.Thebiochemistryofnitrifyingorganisms.In:ShivelyJM,editor.Variationsofautotrophiclife.London:AcademicPress;;1991.p.171–200.[24]HymanMR,WoodPM.EthyleneoxidationbyNitrosomonaseuropaea.JArchMicrobiol1984;137(2):155–8.[25]HynesRK,KnowlesR.ProductionofnitrousoxidebyNitrosomonaseuropaea:effectsofacetylene,pHandoxygen.CanJMicrobiol1984;30:1397–404.[26]ProsserJI.Autotrophicnitrificationinbacteria.In:RoseAH,TempestDW,editors.p.Advances125–81.inmicrobialphysiology,vol.30.London:AcademicPress;1989.[27]GroenewegJ,SellnerB,TappeW.AmmoniaoxidationinNitrosomonasatNH3concentrationsnearKm:effectsofpHandtemperature.WaterRes1994;28:2561–6.[28]SteinLY,ArpDJ.Ammoniumlimitationresultsinthelossofammonia-oxidizingactivityinNitrosomonaseuropaea.ApplEnvironMicrobiol1998;64:1514–21.[29]ChapmanBD,SchleicherM,BeugerA,GostomskiP,ThieleJH.ImprovedmethodsforthecultivationofthechemolithoautotrophicbacteriumNitroso-monaseutropha.JMicrobiolMethods2006;65(11):96–106.[30]ZartD,BockE.HighrateofaerobicnitrificationanddenitrificationbyNitro-somonaseutrophagrowninafermentorwithcompletebiomassretentioninthepresenceofgaseousNO2orNO.ArchMicrobiol1998;169:282–6.[31]BeaumontHJE,LensSI,WesterhoffHV,vanSpanningRJM.NovelnirKclustergenesinNitrosomonaseuropaeaarerequiredforNirK-dependenttolerancetonitrite.JBacteriol2005;187:6849–51.[32]LaanbroekHJ,Ba¨r-GilissenMJ,HoogveldHL.Nitriteasastimulusforammo-nia-starvedNitrosomonaseuropaea.ApplEnvironMicrobiol2002;68:1454–7.[33]SteinLY,ArpDJ.LossofammoniamonooxygenaseactivityinNitrosomonaseuropaeauponexposuretonitrite.ApplEnvironMicrobiol1998;64(10):4098–102.[34]VandeGraafAA,DeBruijnP,RobertsonLA,KuenenJG.Autotrophicgrowthofanaerobicammonium-oxidizingmicroorganismsinafluidizedbedreactor.Microbiology1996;142:2187–96.[35]BradfordMM.Arapidandsensitivemethodforthequantitationofmicrogramquantitiesofprotein,utilizingtheprincipleofprotein–dyebinding.AnnBiochem1976;72:248–354.[36]WeidingerK,Neuha¨userB,GilchS,LudewigU,MeyerO,SchmidtI.Functionalandphysiologicalevidenceforarhesus-typeammoniatransporterinNitro-somonaseuropaea.FEMSMicrobiolLett2007;273(2):260–7.[37]BockE,SchmidtI,Stu¨venR,ZartD.NitrogenlosscausedbydenitrifyingNitrosomonascellsusingammoniumorhydrogenaselectrondonorsandnitriteaselectronacceptor.ArchMicrobiol1995;163:16–20.[38]SchmidtI,SteenbakkersPJM,opdenCampHJM,SchmidtK,JettenMSM.PhysiologicandproteomicevidenceforaroleofnitricoxideinbiofilmformationbyNitrosomonaseuropaeaandotherammoniaoxidizers.JBacteriol2004;186(9):2781–8.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- haog.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务