您好,欢迎来到好走旅游网。
搜索
您的当前位置:首页赣榆区高级中学2018-2019学年高二上学期第一次月考试卷数学

赣榆区高级中学2018-2019学年高二上学期第一次月考试卷数学

来源:好走旅游网
精选高中模拟试卷

赣榆区高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________

一、选择题

1. 复数Z=

(i为虚数单位)在复平面内对应点的坐标是( )

A.(1,3) B.(﹣1,3) C.(3,﹣1) D.(2,4)

2. 函数f(x)在定义域R上的导函数是f'(x),若f(x)f(2x),且当x(,1)时,(x1)f'(x)0,设af(0),bf(2),cf(log28),则( )

A.abc B.abc C.cab D.acb 3. 如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则

等( )

A. B. C. D.

4. 在数列{an}中,a115,3an13an2(nN*),则该数列中相邻两项的乘积为负数的项是 ( )

A.a21和a22 B.a22和a23 C.a23和a24 D.a24和a25 5. 若某程序框图如图所示,则该程序运行后输出的值是( ) A.7

B.8

C. 9

D. 10

第 1 页,共 17 页

精选高中模拟试卷

【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件.

6. 函数y=f′(x)是函数y=f(x)的导函数,且函数y=f(x)在点p(x0,f(x0))处的切线为l:y=g(x)=f′(x0)(x﹣x0)+f(x0),F(x)=f(x)﹣g(x),如果函数y=f(x)在区间[a,b]上的图象如图所示,且a<x0<b,那么( )

A.F′(x0)=0,x=x0是F(x)的极大值点 B.F′(x0)=0,x=x0是F(x)的极小值点 C.F′(x0)≠0,x=x0不是F(x)极值点 D.F′(x0)≠0,x=x0是F(x)极值点

7. 若函数f(x)=2sin(ωx+φ)对任意x都有f(

+x)=f(﹣x),则f(

)=( )

第 2 页,共 17 页

精选高中模拟试卷

A.2或0 B.0 C.﹣2或0 D.﹣2或2

8. 若复数z1,z2在复平面内对应的点关于y轴对称,且z12i,则复数

z1在复平面内对应的点在( ) z2A.第一象限 B.第二象限 C.第三象限 D.第四象限

【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力.

9. 已知函数f(x)是(﹣∞,0)∪(0,+∞)上的奇函数,且当x<0时,函数的部分图象如图所示,则不等式xf(x)<0的解集是( )

A.(﹣2,﹣1)∪(1,2) B.(﹣2,﹣1)∪(0,1)∪(2,+∞)

C.(﹣∞,﹣2)∪(﹣1,0)∪(1,2) D.(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)

10.已知函数f(x)的图象如图,则它的一个可能的解析式为( )

A.y=2 B.y=log3(x+1) C.y=4﹣ D.y=

有如下的问题:问积几何?”意底面宽AD=3ABCD的距离为

11.《九章算术》是我国古代的数学巨著,其卷第五“商功”“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下丈,长AB=4丈,上棱EF=2丈,EF∥平面ABCD.EF与平面1丈,问它的体积是( ) A.4立方丈

B.5立方丈

C.6立方丈 D.8立方丈

12.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( ) A.28

B.76

C.123 D.199

二、填空题

2ex1lnxxaaR,13.【常熟中学2018届高三10月阶段性抽测(一)】已知函数fx若曲线y2xxe1第 3 页,共 17 页

精选高中模拟试卷

(e为自然对数的底数)上存在点x0,y0使得f14.若正方形P1P2P3P4的边长为1,集合M={x|x=①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;

③当x=1时,(i,j)有4种不同取值; ④当x=﹣1时,(i,j)有2种不同取值; ⑤M中的元素之和为0.

fyy00,则实数

a的取值范围为__________.

且i,j∈{1,2,3,4}},则对于下列命题:

其中正确的结论序号为 .(填上所有正确结论的序号)

215.已知各项都不相等的等差数列an,满足a2n2an3,且a6a1a21,则数列Sn项中 n12的最大值为_________.

16.已知一个算法,其流程图如图,则输出结果是 .

17.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是 . 18.

17.已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x=1对称.

三、解答题

19.已知函数f(x)=lnx﹣a(1﹣),a∈R. (Ⅰ)求f(x)的单调区间; (Ⅱ)若f(x)的最小值为0. (i)求实数a的值;

(ii)已知数列{an}满足:a1=1,an+1=f(an)+2,记[x]表示不大于x的最大整数,求证:n>1时[an]=2.

第 4 页,共 17 页

精选高中模拟试卷

20.(本小题满分12分)

数列{bn}满足:bn12bn2,bnan1an,且a12,a24. (1)求数列{bn}的通项公式; (2)求数列{an}的前项和Sn.

21.在△ABC中,cos2A﹣3cos(B+C)﹣1=0. (1)求角A的大小;

(2)若△ABC的外接圆半径为1,试求该三角形面积的最大值.

22.已知二次函数f(x)的图象过点(0,4),对任意x满足f(3﹣x)=f(x),且有最小值是. (1)求f(x)的解析式;

(2)求函数h(x)=f(x)﹣(2t﹣3)x在区间[0,1]上的最小值,其中t∈R;

(3)在区间[﹣1,3]上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围.

第 5 页,共 17 页

精选高中模拟试卷

23.函数f(x)=sin2x+(2)当x∈[0,

24.已知数列{an}的前项和公式为Sn2n230n. (1)求数列{an}的通项公式an; (2)求Sn的最小值及对应的值.

sinxcosx.

(1)求函数f(x)的递增区间;

]时,求f(x)的值域.

第 6 页,共 17 页

精选高中模拟试卷

赣榆区高级中学2018-2019学年高二上学期第一次月考试卷数学(参)

一、选择题

1. 【答案】A 【解析】解:复数Z=故选:A.

【点评】本题考查了复数的运算法则、几何意义,属于基础题.

2. 【答案】C 【解析】

=

=(1+2i)(1﹣i)=3+i在复平面内对应点的坐标是(3,1).

考点:函数的对称性,导数与单调性.

可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数f(x)满足:

【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不

f(ax)f(ax)或f(x)f(2ax),则其图象关于直线xa对称,如满足f(2mx)2nf(x),

则其图象关于点(m,n)对称.

3. 【答案】C

【解析】解:∵M、G分别是BC、CD的中点, ∴∴故选C

=

==

+ +

=

+

=

【点评】本题考查的知识点是向量在几何中的应用,其中将键.

4. 【答案】C 【解析】

化为++,是解答本题的关

第 7 页,共 17 页

精选高中模拟试卷

点:等差数列的通项公式. 5. 【答案】A

【解析】运行该程序,注意到循环终止的条件,有n10,i1;n5,i2;n16,i3;n8,i4;n4,i5;n2,i6;n1,i7,到此循环终止,故选 A.

6. 【答案】 B

【解析】解:∵F(x)=f(x)﹣g(x)=f(x)﹣f′(x0)(x﹣x0)﹣f(x0), ∴F'(x)=f'(x)﹣f′(x0) ∴F'(x0)=0, 又由a<x0<b,得出

当a<x<x0时,f'(x)<f′(x0),F'(x)<0, 当x0<x<b时,f'(x)<f′(x0),F'(x)>0, ∴x=x0是F(x)的极小值点 故选B.

【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值.

7. 【答案】D

【解析】解:由题意:函数f(x)=2sin(ωx+φ), ∵f(

+x)=f(﹣x),

=

可知函数的对称轴为x=

根据三角函数的性质可知, 当x=∴f(

时,函数取得最大值或者最小值. )=2或﹣2

故选D.

8. 【答案】B

第 8 页,共 17 页

精选高中模拟试卷

【解析】

9. 【答案】D

【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图 则不等式xf(x)<0的解为:

解得:x∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞) 故选:D.

10.【答案】C

【解析】解:由图可得,y=4为函数图象的渐近线, 函数y=2函数y=4﹣

,y=log3(x+1),y=

的值域均含4,

即y=4不是它们的渐近线,

的值域为(﹣∞,4)∪(4,+∞),

故y=4为函数图象的渐近线, 故选:C

【点评】本题考查的知识点是函数的图象,函数的值域,难度中档.

11.【答案】 【解析】解析:

选B.如图,设E、F在平面ABCD上的射影分别为P,Q,过P,Q分别作GH∥MN∥AD交AB于G,M,交DC于H,N,连接EH、GH、FN、MN,则平面EGH与平面FMN将原多面体分成四棱锥E-AGHD与四棱锥

第 9 页,共 17 页

精选高中模拟试卷

F-MBCN与直三棱柱EGH-FMN.

由题意得GH=MN=AD=3,GM=EF=2,

EP=FQ=1,AG+MB=AB-GM=2,

111

所求的体积为V=(S矩形AGHD+S矩形MBCN)·EP+S△EGH·EF=×(2×3)×1+×3×1×2=5立方丈,故选B.

33212.【答案】C

【解析】解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.

1010

继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a+b=123,.

故选C.

二、填空题

13.【答案】,

e12ex11e2x2ex1【解析】结合函数的解析式:y2x可得:y', 22xe1e1令y′=0,解得:x=0,

当x>0时,y′>0,当x<0,y′<0,

则x∈(-∞,0),函数单调递增,x∈(0,+∞)时,函数y单调递减, 则当x=0时,取最大值,最大值为e, ∴y0的取值范围(0,e],

x2lnx1lnxxaaR可得:f'x结合函数的解析式:fx, 2xxx∈(0,e),f'x0, 则f(x)在(0,e)单调递增, 下面证明f(y0)=y0.

假设f(y0)=c>y0,则f(f(y0))=f(c)>f(y0)=c>y0,不满足f(f(y0))=y0. 同理假设f(y0)=clnxxax. xlnx1lnx设gx,求导g'x,

xx2令函数fx当x∈(0,e),g′(x)>0,

第 10 页,共 17 页

精选高中模拟试卷

g(x)在(0,e)单调递增, 当x=e时取最大值,最大值为ge当x→0时,a→-∞, ∴a的取值范围,.

e1, e1点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题(2)问时,关键是分离参数k,把所求问题转化为求函数的最小值问题.

(2)若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到. 14.【答案】 ①③⑤

【解析】解:建立直角坐标系如图:

则P1(0,1),P2(0,0),P3(1,0),P4(1,1). ∵集合M={x|x=

对于①,当i=1,j=3时,x=对于②,当i=3,j=1时,x=对于③,∵集合M={x|x=∴∴

=(1,﹣1),•

=1;

•=

=1;

且i,j∈{1,2,3,4}},

=(1,﹣1)•(1,﹣1)=1+1=2,故①正确; =(1,﹣1)•(﹣1,1)=﹣2,故②错误; 且i,j∈{1,2,3,4}}, =(0,﹣1),

==1;

=(1,0), •

=1;

∴当x=1时,(i,j)有4种不同取值,故③正确;

④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;

⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2; 当i=2,j=4,或i=4,j=2时,x=0, ∴M中的元素之和为0,故⑤正确. 综上所述,正确的序号为:①③⑤, 故答案为:①③⑤.

第 11 页,共 17 页

精选高中模拟试卷

【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得﹣1),

=

=(0,﹣1),

=

难题.

15.【答案】 【解析】

=(1,

=(1,0)是关键,考查分析、化归与运算求解能力,属于

点:1.等差数列的通项公式;2.等差数列的前项和.

【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及

a1,an,d,n,Sn五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公

式在解题中起到变量代换作用,而a1,d是等差数列的两个基本量,用它们表示已知和未知是常用方法. 16.【答案】 5 .

【解析】解:模拟执行程序框图,可得 a=1,a=2

不满足条件a>4a+1,a=3

222

不满足条件a>4a+1,a=4 不满足条件a>4a+1,a=5

2

满足条件a>4a+1,退出循环,输出a的值为5.

故答案为:5.

【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查.

17.【答案】 50π

【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,

第 12 页,共 17 页

精选高中模拟试卷

所以长方体的对角线就是球的直径,长方体的对角线为:所以球的半径为:故答案为:50π.

18.【答案】

;则这个球的表面积是:

=50π.

>0,

x

【解析】解:∵f(x)=ag(x)(a>0且a≠1),

=ax,

又∵f′(x)g(x)>f(x)g′(x), ∴(∴∴a>1, ∵

+)′==ax是增函数,

=.

11

∴a+a﹣=,解得a=或a=2.

综上得a=2. ∴数列{∵数列{

}为{2n}.

}的前n项和大于62,

23n

∴2+2+2+…+2==2n+1﹣2>62,

即2

n+1

6

>=2,

∴n+1>6,解得n>5. ∴n的最小值为6. 故答案为:6.

【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题.

三、解答题

19.【答案】

【解析】解:(Ⅰ)函数f(x)的定义域为(0,+∞),且f′(x)=﹣

=

第 13 页,共 17 页

精选高中模拟试卷

当a≤0时,f′(x)>0,所以f(x)在区间(0,+∞)内单调递增; 当a>0时,由f′(x)>0,解得x>a;由f′(x)<0,解得0<x<a. 所以f(x)的单调递增区间为(a,+∞),单调递减区间为(0,a). 综上述:a≤0时,f(x)的单调递增区间是(0,+∞);

a>0时,f(x)的单调递减区间是(0,a),单调递增区间是(a,+∞). (Ⅱ)(ⅰ)由(Ⅰ)知,当a≤0时,f(x)无最小值,不合题意; 当a>0时,[f(x)]min=f(a)=1﹣a+lna=0, 令g(x)=1﹣x+lnx(x>0),则g′(x)=﹣1+=

由g′(x)>0,解得0<x<1;由g′(x)<0,解得x>1.

所以g(x)的单调递增区间为(0,1),单调递减区间为(1,+∞). 故[g(x)]max=g(1)=0,即当且仅当x=1时,g(x)=0. 因此,a=1.

(ⅱ)因为f(x)=lnx﹣1+,所以an+1=f(an)+2=1+

+lnan.

由a1=1得a2=2于是a3=+ln2.因为<ln2<1,所以2<a3<. 猜想当n≥3,n∈N时,2<an<. 下面用数学归纳法进行证明.

①当n=3时,a3=+ln2,故2<a3<.成立.

②假设当n=k(k≥3,k∈N)时,不等式2<ak<成立. 则当n=k+1时,ak+1=1+

+lnak,

由(Ⅰ)知函数h(x)=f(x)+2=1++lnx在区间(2,)单调递增, 所以h(2)<h(ak)<h(),又因为h(2)=1++ln2>2, h()=1++ln<1++1<.

故2<ak+1<成立,即当n=k+1时,不等式成立. 根据①②可知,当n≥3,n∈N时,不等式2<an<成立. 综上可得,n>1时[an]=2.

【点评】本题主要考查函数的导数、导数的应用等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想等,属难题.

第 14 页,共 17 页

精选高中模拟试卷

20.【答案】(1)bn2n12;(2)Sn2n2(n2n4). 【解析】

试题分析:(1)已知递推公式bn12bn2,求通项公式,一般把它进行变形构造出一个等比数列,由等比数列的通项公式可得bn,变形形式为bn1x2(bnx);(2)由(1)可知anan1bn2n2(n2),这是数列{an}的后项与前项的差,要求通项公式可用累加法,即由an(anan1)(an1an2)

(a2a1)a1求得.

试题解析:(1)bn12bn2bn122(bn2),∵又b12a2a124,

bn122,

bn2∴an(222232n)2n22(21)2n22n12n.

21n

4(12n)n(22n)2n2(n2n4). ∴Sn122考点:数列的递推公式,等比数列的通项公式,等比数列的前项和.累加法求通项公式. 21.【答案】

【解析】(本题满分为12分)

解:(1)∵cos2A﹣3cos(B+C)﹣1=0.

2

∴2cosA+3cosA﹣2=0,…2分

∴解得:cosA=,或﹣2(舍去),…4分 又∵0<A<π,

第 15 页,共 17 页

精选高中模拟试卷

∴A=…6分

,…

(2)∵a=2RsinA=

22222

又∵a=b+c﹣2bccosA=b+c﹣bc≥bc,

∴bc≤3,当且仅当b=c时取等号,… ∴S△ABC=bcsinA=

bc≤

, . …

∴三角形面积的最大值为

22.【答案】

【解析】解:(1)二次函数f(x)图象经过点(0,4),任意x满足f(3﹣x)=f(x) 则对称轴x=, f(x)存在最小值, 则二次项系数a>0

2

设f(x)=a(x﹣)+.

将点(0,4)代入得: f(0)=解得:a=1

22

∴f(x)=(x﹣)+=x﹣3x+4.

(2)h(x)=f(x)﹣(2t﹣3)x =x2﹣2tx+4=(x﹣t)2+4﹣t2,x∈[0,1].

当对称轴x=t≤0时,h(x)在x=0处取得最小值h(0)=4;

2

当对称轴0<x=t<1时,h(x)在x=t处取得最小值h(t)=4﹣t;

当对称轴x=t≥1时,h(x)在x=1处取得最小值h(1)=1﹣2t+4=﹣2t+5. 综上所述:

当t≤0时,最小值4;

2

当0<t<1时,最小值4﹣t;

当t≥1时,最小值﹣2t+5. ∴

(3)由已知:f(x)>2x+m对于x∈[﹣1,3]恒成立,

第 16 页,共 17 页

精选高中模拟试卷

2

∴m<x﹣5x+4对x∈[﹣1,3]恒成立, 2

∵g(x)=x﹣5x+4在x∈[﹣1,3]上的最小值为

∴m<.

23.【答案】 【解析】解:(1)令

f(x)的递增区间为(2)∵∴

∴f(x)的值域是

,∴

,∴…(12分)

解得

…(6分) …(8分)

…(10分)

…(2分)

【点评】本题考查两角和与差的三角函数,二倍角公式的应用,三角函数的最值,考查计算能力.

24.【答案】(1)an4n32;(2)当n7或时,Sn最小,且最小值为S7S8112. 【解析】

试题分析:(1)根据数列的项an和数列的和Sn之间的关系,即可求解数列{an}的通项公式an;(2)由(1)中的通项公式,可得a1a2∴当n1时,a1S128.

当n2时,anSnSn1(2n230n)[2(n1)230(n1)]4n32. ∴an4n32,nN. (2)∵an4n32, ∴a1a2a70,a80,当n9时,an0,即可得出结论.1

试题解析:(1)∵Sn2n230n,

a70,a80,

当n9时,an0.

∴当n7或8时,Sn最小,且最小值为S7S8112. 考点:等差数列的通项公式及其应用.

第 17 页,共 17 页

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- haog.cn 版权所有 赣ICP备2024042798号-2

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务