定积分习题参考答案
习题5-1 (A)
12(b2a21.(1)) (2)e1
42.3
323.(1)2 (2)2R (4)
0sinxdx20sinxdx2
T24.
QTI(e)dt1
5.88.2KN
l6.
M0(x)dx
28.(1)2231xdx1xdx 2(3)1lnxdx2(lnx)21dx (3)2cosxdx22cosxdx20(2)20xdx20sinxdx
4(4)3lnxdx43(lnx)2dx
11(5)0xdxln(x1)dx0
e2112(ee)dxe2e1exdxeelnx09.(1) (2)2
12(3)
21xarctanxdx9333 (4)
2e2ex22xdx2e14
习题5-1 (B)
1.(1)可积 (2)可积 (3)不可积 (4)可积
11bdx(x)dxxdx20a3.(1)0 (2)1x (3)ba
115.
V(R2x2)dxRR
6.约6.7升/分
习题5-2 (A)
1.sinx,
22
3x24121x2x1x2.(1) (2)
2x21x8 (3)(sinxcosx)cos(sinx)
(4)2x'(x2)sin[(x2)]2'(x)sin[(x)]2
3.tcott
cosx4.
ey2
5.极小值I(0)0
6.(0,14)
87.3a3
8. -1;2
219.(1)8 (2)3a (3)41(5)
14 (6)
atctan(e2)4 8(8)42 (9)15(122) 10.(1)0; 0 (2) (3)0 (4)-1
1(1e1(7)2)
(10)e21cos4cos2
(4)0(kl),(kl)
2111.(1)1 (2)2 (3)3 (4)3
习题5-2 (B)
121.(1)ln2 (2)k1 (3)
2.f(x)在x0处连续,可导,且f'(0)0
13.f(x)3x2ex1,e
14.2,2
12当0x1时(x)x315.
2x22x116当1x2时
8. 2;5
9. -1
习题5-3 (A)511.(1)512 (2)
43 (3)1e12 (4)0
32ln(23)231234(5)12ln2 (6) (7) (8)
322.(1)3 (2) (3)324 (4)42
131312()ln(2e31)222 3.(1)9 (2)w (3)4911(e1)2(1e)542 (4) (5) (6)
158(7)16 (8)35
8.e
习题5-3 (B)
1.(1)424 (2)2(2) (3)2
11(esin1ecos11)ln2(4)2 (5)84 (6)8
e1(7)2 (8)0 (9)4 (10)4
m!!m!!(11)当m为奇数,(m1)!!2 当m为偶数,(m1)!!
(m1)!!2m!!2Jm(m1)!!m为偶数m为大于1的奇数(12)J1,
m!!2.f(xb)f(xa)
13.4
124.2lnx
8.ln(1e)
19.2652
47!!10.0,
448!!2
1. 145.6(平方米)
2.(1)0.7188 3.(1)1.3890
习题5-4
(3)0.6931
(3)1.3506
(2)0.6938 (2)1.3506
习题5-5(A)
1.(1)收敛,-1 (2)收敛,1ln2
ab1(be) b0b0(3)时发散,时收敛于
1ln2(4)收敛于2 (5)收敛于2 (6)收敛于42
2.(1)收敛,3 (2)收敛,1 (3)发散
8(4)收敛,2 (5)收敛,3 (6)收敛,3
e3.2
4.n!
习题5-5(B)
1ln21.(1)3 (2)发散 (3)发散 (4)0
2ln(32)(5)发散 (6)2 (7)2 (8)2
1(lnlna)12.1时发散,1时收敛于1
11k1k1lnln2时取最小值 3.k1时发散,k1时收敛于(k1)(ln2),
4.2
1.(1)发散 (2)收敛(6)发散 (7)发散 12.(1)(1),0 一.1.D 2.A 5.C 6.D 二.1.3f(cos3x)sin3x 13.y2x 4.12 48.15 9.ln3 习题5-6
(3)收敛 (4)收敛 (5)收敛
收敛 (9)发散 (10)绝对收敛
(2)(p1),p1
总复习题五
3.B 4.B
7.D 8.C
2.0x2cost2dt2x2cosx4
5.sinx2 6.> 7.4
410.11 11.2 12.2
(8)
111(1x)21(1x)2三.1.2 2.当1x0时,2,当x0时,2
311ln(23)ln222(13e) 2333. 4. 5. 6.
23337.38 8.2 9.0 10.4
1'12f(0)a1,b0,c2 13. 11.2n 12.
六.(定积分)练习题选解
1. 习题5-5(B) 4.设f(x)与g(x)在[a,b]上连续,证明:
(1)
f(x)dx0若在[a,b]上f(x)0,且a,则在[a,b]上f(x)0.
b(2)
f(x)dx0若在[a,b]上f(x)0,且f(x)不恒为零,则a.
b(3)
若在[a,b]上f(x)g(x),且abf(x)dxg(x)dxab,则在[a,b]上f(x)g(x).
证:(1)用反证法.假设f(x)在[a,b]不恒为零,则至少存在一点x0[a,b] 使f(x0)A0.不妨设x0(a,b),由f(x)在xx0处连续及极限的局部保号性,存在0,使
(x0,x0)(a,b),且在
(x0,x0)上
f(x)A2,于是
baf(x)dxx0x0f(x)dxx0x0AAdx2022.
这与题设abf(x)dx0矛盾.
(2)由在[a,b]上
f(x)0f(x)dx0ab.
而如果baf(x)dx0f(x)dx0[a,b]f(x)0a,则由(1)知在在上与条件矛盾,故只有.
b(3)由(1)即得.
2.习题5-2(B). 3.设f(x)是连续函数,且满足
f(x)3x2exf(x)dx01f(x)dxf(x)0,求与.
1解:设0即
1f(x)dxI,由题设f(x)3xeI,两边在[0,1]上02x1f(x)dx3x2dxIexdx0011,
I1I(e1)I1e.
即
10f(x)dx12x1e,而f(x)3xe.
'ff(x)[a,b](a,b)3.习题5-2(B). 6.设在上连续,在内可导,且(x)0,'F(a,b)证明在内(x)0.
F(x)1xf(t)dtaxa.
证明:设x(a,b),
F(x)'(xa)f(x)f(t)dt(xa)a2x(xa)f(x)f()(xa)(xa)2
f(x)f()xaaxb,而由条件在在[a,b]上f(x)单调不增,
f(x)f()F'(x)0.
4.习题5-2(B). 8.已知函数g(x)连续,且g(1)5,01g(t)dt2,设
f(x)1x2(xt)g(t)dt20.
证明:
f'(x)xg(t)dttg(t)dt00xx'''''f(1)f,从而计算,(1).
xxx1f(x)[x2g(t)dt2xtg(t)dtt2g(t)dt]0002证明:
xx1f'(x)[2xg(t)dtx2g(x)2tg(t)dt2x2g(x)x2g(x)]002
xg(t)dttg(t)dt00xx
xf''(x)g(t)dtxg(t)xg(t)g(t)dt00x
f(1)g(t)dt20''1
f'''(x)g(x),f'''(1)g(1)5.
2f(x)dxtf(xt)dt1cosxf(x)5.习题5-2(B). 9.已知连续,0,求0.
x解:
x0tf(xt)dt中令
xtu,得
x0tf(xt)dt(xu)f(u)dux0
xxx(xu)f(u)duxf(u)duuf(u)du000.
于是
xf(u)duuf(u)du1cosx00xx
两边求导,得x0f(u)dusinx
于是
20f(x)dxsin21.
1206.习题5-2(B). 10.设f(x)在[0,1]上可微,且满足
f(1)2xf(x)dx.
'f()f()0. (0,1)试证:存在使得
11[0,]2使 证明:设F(x)xf(x),由定积分中值定理,
120xf(x)dxF(x)dx1201F(1)2,由已知条件,有
1f(1)2xf(x)dx2F(1)F(1)2.
120 又由于F(1)1f(1)F(1),且F(x)在[1,1]上连续,在(1,1)
'F(,1)(0,1)1 内可导,故由罗尔定理,,使得()0.
'f()f()0. 即
7. 习题5-3(B). 1.(1)01sinxdx=
0sin2xxxxcos22sincosdx2222
=
0xxxsincosdx2sin()dx02224
xx22sin()dx2sin()dx0024242=
=4(21).
8. 习题5-3(B). 1.(8)
20cosxsinxdxxt1sinxcosx 令2,
0sintcostcosxsinxdt2sintcostdtI2dx01sintcostI 01sinxcosx21costsintI20cosxsinxdx01sinxcosx.
cosx12(cosxsinx)(cosxsinx)2dxdx0sinxcosx02sinxcosx9. 习题5-3(B). 1.(9)
12112][dx2d(sinxcosx)][lnsinxcosx00sinxcosx20224.
10. 习题5-3(B). 1.(12)计算
Jmxsinmxdx0 (m为自然数).
解:
Jmxsinxdx0m20sinmxdx 令
x2t
有
20sinxdxm22mm002cosxdx2sinmxdxcostdt2
m1m3312mm2422m1m342Jmmm253于是
当m为偶数时当m为大于1的奇数时当m1时.
'ff(x)f(0)0x011. 习题5-3(B). 3.设在点的某个领域内连续,且,(0)1.试求
tf(xlim0x0x2t2)dtx4.
1x2222f(xt)d(xt)20
解:
x0tf(x2t2)dt
1x2f(u)du20
令x2t2u10f(u)du2x2
1x212f(u)duf(x)2xtf(xt)dt0lim0lim2lim244x0x0xx4x3于是,x0
x22f(x2)f(0)1'1limf(0)44. 4x2 x0
xxt12.习题5-3(B). 6.设f(x)为连续函数.证明:0f(t)(xt)dt[f(u)du]dt00.
证明:设0tf(u)du(t),则0x[f(u)du]dt(t)dt(t)t0t'(t)dt000ttxx
(x)xtf(t)dtxf(u)dutf(t)dt000xxx
xf(t)dttf(t)dt(xt)f(t)dt000xxx.
13. 习题5-3(B). 7.设
In4tannxdx,nN且n10.
证明:(1)
InIn2111Inn1 (2) 2n22n2
00证明:(1)
InIn24tannxdx4tann2xdx4tann2x(tan2x1)dx0
4tann2xdtanx01n1.
(2) 由(1)知,
InIn211In2Inn1,n1
[0,]n2nn2而在4上,tanxtanxtanx
于是In2InIn2,In2In2InInIn2
1111In2In2(n1). n1,2(n1)即n114. 习题5-5(B). 1.(7)(xx)exdx2xexdx0
2xde0x2[xex0exdx]20
15. 习题5-5(B) . 1.(8)
2dxx2101dx1x202dxx211
arcsinx0llnxx112212ln(23).
16. 习题5-5(B). 4.已知
02sinxsinxdxdx20x2.求x.
解:
0sinx1sinx2dxsinxdx0xx2220012sinxcosxdxx
0sin2xsintsin2xdxd2xdt00x2xt2.
17. 总复习题五. 一(5). 题目(略)
解:
F(x)x2f(t)dtt2f(t)dt00xx
F'(x)2xf(t)dtx2f(x)x2f(x)2xf(t)dt00xx
x现要求k使x0xlim2xf(t)dt0xkl0
lim2xf(t)dt0x0xklim2f(t)dt0xx0xk1,显然k10 (否则极限为0)
用罗必达法则,上式
lim2f(x)2f(x)f(0)limx0(k1)xk2k1x0xk2
2f'(0)0当k21时上式为k1,故k3.
18. 总复习题五. 一(7). 题目(略)
st0解:令txu,则
Itf(tx)dxf(u)du0s
故I的值依赖于s,不依赖于t.
19. 总复习题五. 三.(2) 设x1.求1x(1t)dt.
11(1t)dt(1t2)(1x)21221解:当1x0时,原式
xx0x1(1t)dt(1t)dt1(1x)202当x0时,原式1.
20. 总复习题五. 三.(7)
dxdx(x1)4x22x
3解:原式
3(x1)4(x1)21令x1sect
secttant3sec4ttantdt2
2(1sin2t)costdt323338.
sintdtf(x)dxt,计算0.
21. 总复习题五. 三.(8) 设
f(x)x0解:
0f(x)dxxf(x)0xf(x)dx0'0sintsinxdtxdx0tx
0xsinxdxsinxdx20x.
axsinxcx0xln(1t3)dtba,b,ct22. 总复习题五. 三.(12) 确定常数使.
lim解:首先因为
lim(axsinx)0x0,必须x0limxbln(1t3)dt0b0t
axsinxacosxx(acosx)acosxlimlimlimc2x0xln(1t3)x0ln(1x3)x0ln(1x3)x0xdtbtx于是
lim必须a1,从而可得极限
c12.
2nnsin)lim(x0n111nn2n. 23. 总复习题五. 三.(13) 求极限
sinsin2nnnsin1(sinsin2sin)1sinin11nn1nnni1nn2n解:,
sinsin11ni2limsinsinxdx0nnn i1而
另一方面,
2nnnsin1(sinsin2sin)n1sinin11n1n1nnn1ni1nn2n
sin1n1ni2limsinsinxdx0nn1nn i1而
sin原式2.
24. 总复习题五. 四.(4) 设f(x)在[0,1]上连续,在(0,1)内可导,且
'f(0,1)c在内存在一点,使(c)0.
32f(x)dxf(0)31.证明
证明:由积分中值定理,
1231f(x)dxf(),3213
1即
f()32f(x)dxf(0)3,再由罗尔定理c(0,)(0,1)
'f使(c)0.
25. 总复习题五. 四.(5) 设f(x)在[a,b]上连续,g(x)在[a,b]连续且不变号.证明至少存在一点[a,b],使下式成立baf(x)g(x)dxf()bag(x)dx (积分第一中值定理)
证明:不妨设g(x)0 (axb) (g(x)0时证明类似)
由f(x)在[a,b]上连续得 mf(x)M.
由g(x)0得 mg(x)f(x)g(x)Mg(x),
bbb
mag(x)dxaf(x)g(x)dxMag(x)dx
bmaf(x)g(x)dxbM而ag(x)dx0,(1)当bag(x)dx0时,
bag(x)dx
bf()af(x)g(x)dx由介值定理,[a,b],使
bag(x)dx
b即af(x)g(x)dxf()bag(x)dx
b(2)当ag(x)dx0时,g(x)0.等式也成立.
26. 总复习题五. 四.(6) 设f(x),g(x)在[a,b]上都连续.
证明:(1)
(f(x)g(x)dx)f(x)dxg2(x)dxaaab2b2b (柯西-许瓦兹不等式)
(2)
([f(x)g(x)]dx)(f(x)dx)(g(x)dx)aaab22b212b212 (闵可夫斯基不等式).
证明:(1)对实数t,
[f(x)tg(x)]20[f(x)tg(x)]2dx0ab
即abf2(x)dx2tf(x)g(x)dxt2g2(x)dx0aabb
于是判别式
[2f(x)g(x)dx]24f2(x)dxg2(x)dx0aaabbb
即
[f(x)g(x)dx]2f2(x)dxg2(x)dxaaabbb.
(2)
([f(x)g(x)]dx)f(x)dx2f(x)g(x)dxg2(x)dxaaaab22b2bb
f(x)dx2ab2baf(x)dxg(x)dxg2(x)dxaa2b2b
b(baf(x)dx2bag2(x)dx)2
12 即
([f(x)g(x)]dx)(f(x)dx)(g(x)dx)aaa22b212b2.
27. 总复习题五. 四.(7) 设f(x),g(x)在[a,a]上都连续,g(x)为偶函数,
且f(x)满足条件f(x)f(x)A (A为常数).
(1)
证明aaf(x)g(x)dxAg(x)dx0a
(2) 利用(1)的结论计算积分
2sinxarctanexdx2.
证明:(1)aaf(x)g(x)dxf(x)g(x)dxf(x)g(x)dxa00a
0af(x)g(x)dx令xtf(t)g(t)dtf(x)g(x)dxa00a
于是aaf(x)g(x)dxf(x)g(x)dxf(x)g(x)dx00aa
[f(x)f(x)]g(x)dxAg(x)dx00aa.
(2)取f(x)arctane,g(x)sinx,
xa2,则f(x),g(x)在
[,]22 上连续,且g(x)为偶
函数.
xx(arctanearctane)'0arctanexarctanexA 又由
令x0得2arctan1A,
A2,即
f(x)f(x)2.
于是
2sinxarctanedxx2022sinxdx202sinxdx2.
因篇幅问题不能全部显示,请点此查看更多更全内容