负整数 (如:1,2,3)有理数 1、 11正分数(如:,,5.3,3.8)
23 11分数负分数(如:,,2.3,4.8) 23有理数及其运算知识点汇总
正整数(如:1,2,3 )
2、数轴的三要素:原点、正方向、单位长度(三者缺一不可)。 3、任何一个有理数,都可以用数轴上的一个点来表示。(反过来,不能说数轴上所有的点都表示有理数)
4、如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。(0的相反数是0)
5、在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。 6、绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。
7、正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。
a(a0)a(a0) |a|0(a0) 或 |a|
a(a0)a(a0)越来越大 -3 -2 -1 0 1 2 3 8、绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数; 互为相反数的两数(除0外)的绝对值相等; 任何数的绝对值总是非负数,即|a|≥0
9、比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下: ①先求出两个数负数的绝对值; ②比较两个绝对值的大小;
③根据“两个负数,绝对值大的反而小”做出正确的判断。 10、绝对值的性质:
①对任何有理数a,都有|a|≥0 ②若|a|=0,则|a|=0,反之亦然 ③若|a|=b,则a=±b
④对任何有理数a,都有|a|=|-a|
11、有理数加法法则:
①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并 用较大数的绝对值减去较小数的绝对值。 ③一个数同0相加,仍得这个数。
12、加法的交换律、结合律在有理数运算中同样适用。
灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加; ②符号相同的数,可以先相加; ③分母相同的数,可以先相加;
④几个数相加能得到整数,可以先相加。
13、有理数减法法则: 减去一个数,等于加上这个数的相反数。 有理数减法运算时注意两“变”:①改变运算符号; ②改变减数的性质符号(变为相反数)
有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。
14、有理数的加减法混合运算的步骤:
①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;
②利用加法则,加法交换律、结合律简化计算。
(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。)
15、有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。 ②任何数与0相乘,积仍为0。
如果两个数互为倒数,则它们的乘积为1。(如:-2与
135 、 与…等) 253 16、乘法的交换律、结合律、分配律在有理数运算中同样适用。
有理数乘法运算步骤:①先确定积的符号; ②求出各因数的绝对值的积。
乘积为1的两个有理数互为倒数。注意: ①零没有倒数
②求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。 ③正数的倒数是正数,负数的倒数是负数。
17、有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。 ②0除以任何非0的数都得0。0不可作为除数,否则无意义。
个 18、有理数的乘方 n a指数 n aaaa底数
幂 注意:①一个数可以看作是本身的一次方,如5=51;
②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。 19、乘方的运算性质:
①正数的任何次幂都是正数;
②负数的奇次幂是负数,负数的偶次幂是正数; ③任何数的偶数次幂都是非负数;
④1的任何次幂都得1,0的任何次幂都得0; ⑤-1的偶次幂得1;-1的奇次幂得-1;
⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。 20、有理数混合运算法则:①先算乘方,再算乘除,最后算加减。 ②如果有括号,先算括号里面的。
a
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- haog.cn 版权所有 赣ICP备2024042798号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务