一、选择题(每小题3分,共36分)ABBCBDD1-12:CCCAB
二、填空题(每小题3分,共18分)13.2(x2)(x2)
14.1
15.3016.75
o
17.1218.95三、解答题(本大题共8小题,共66分)27119.计算:2cos30(3π)0321解:原式223
333123
......................................4分.....................................6分a2a2120.先化简,再求值:2(),其中aa2a1a1a2解:原式=
a(a1)2aa1
2(a1)a(a1)......................................4分a(a1)(aa-1)a2
==
(a1)2(a+1)a1将a2代入得:原式=
21.2=22+22-1.....................................6分(1)该班团员人数为:3÷25%=12(人);......................................2分发4条赠言的人数为:12-2-2-3-1=4(人)(图略);(2)60
o
......................................4分(3)画树状图如下:所选两位同学恰好是一位男同学和一位女同学的概率P
7.12
......................................8分22.(1)证明:AB为直径,ACB90O,
ADABCD,ACADACAEC90OEACCABACEABC
......................................4分(2)在RtABC中,ABAC2BC25ACEABC
ACCE
ABBCACBC12
CE
AB524
5......................................8分23.(1)过点F作FGEC于G,依题意知FG//DE,DF//GE,FGE90,∴四边形DFGE是矩形;FGDE;在RtCDE中,DECEtanDCE6tan3023(米)∴点F到直线CE的距离为23米.............................4分(2)∵斜坡CF的坡度i1:1.5
∴RtCFG中,CG1.5FG1.52333o
O
ABCDCD2CE
FDEG336
在RtBCE中,BECEtanBCE6363ABADDEBEDFDEBE3362363634.3(米)答:宣传牌的高度AB约为4.3米.......................................9分24.(1)证明:四边形ABCD为矩形,AB//CDBAEF
由折叠性质知:BAEB'AEFB'AE
AMFM
'.....................................2分(2)当点B恰好落在对角线AC上时,CFACAB2BC210
AB//CFABEFCEBE.....................................5分CEAB3CF5
(3)如图1,当点E在线段ABBEBC上时,AB'的延长线与DC交于点M
CFCE32CF2
3AB4设DMx,CM6x,AMMF6x410x
在RtADM中,AD2DM2AM282x2=(10-x)2
x=9,AM10x4155
sinDAB'DM9
9
AM415
.....................................7分541图1图2如图2,当点E在BC延长线上时,AD的延长线与B'E交于点M
BECE3
2B'EBE24,设B'Mx,AMME24x在RtAB'M
中,AB'2B'M2AM2,62x2(24x)2x
45
4
45
AM24x51
B'M45154
,sinDAB'AM514
45117综上:sinDAB'915
41或sinDAB'17.....................................9分25.(1)P1,10.....................................2分(2)相交,理由如下:.....................................3分设M(0,m)(m0),则点M的“2倍雅圆”的半径r202
mm如图1,过点M作MQON于点Q,MON30O,OMm,MQ
12MO1
2
mr,直线ON与点M的“2倍雅圆”相交。.....................................5分(3)①如图2,过点B作BEl于点E,EAB45,EAEB
过点E作EGx轴于点G,过点A作AFEG交GE的延长线于点F.设点E(x,y),O
FEGB90O,FEAEBG,AEEBAFEEGBEFGB,AFEG,3y1x,xy,x2,y2E(2,2)
1
x32
112
设点C(x,x3),因为始终存在点C的“k倍雅圆”,rkxx30恒成立2211
k0且()243k0,解得k.....................................8分248设直线l的解析式为ykxb,将点A(0,3),E(2,2)代入得:y②直线AB的解析式为y3x3,设D(x,3x3),则AD
(x0)2(3x33)210x,R203(x2)25x234O
323
x3x3(x2)244
20R3过点D作DHl于点H,DAH45,DH
2AD5x.2
假设存在以点D为圆心,20R为半径的圆与直线l有且只有1个交点,3则DH
20R,即5x5x2,解得x1,D(1,0)320R为半径的圆与直线l有且只有1个交点.3.....................................10分即存在点D(1,0),使得以点D为圆心,图1图226.(1)ya(x22x1)2a(x1)22D(1,2).....................................3分(2)如图1,过点D作DHAB于点H,则AHBH在RtAEP中,tanEAP
EP
,EPAPtanEAPAPFP
在RtFBP中,tanFBP,FPBPtanFBP
BPDH24
EAPFBPtanEAPtanFBP
HB1ABAB
24
PEPF(APPB)tanEAPAB4为定值......................................6分AB(3)在PD上找一点M,使PMAM
则MPAMAP,AMD2APDADP
1
AB,DH22
AMADPQMQ
PHDH过点M作MQAP,垂足为Q,则PMQPDH,
AP
13AB2
PQAQ
13AH2
MQ31
PH(23)AH
13AHMQ22(23)AH2
MQ2AQ2AM2AD2AH2DH2
(13)
31AHAH24AH2A(3,0)
2
1123
代入抛物线解析式得a,抛物线解析式为yxx..............................10分2222
MHQH
因篇幅问题不能全部显示,请点此查看更多更全内容