R.Walsh∗andA.J.Ramalho†
InstitutodeF´ısica,UniversidadeFederaldoRiodeJaneiro,CaixaPostal68528,IlhadoFund˜ao,
21945-970RiodeJaneiro,RJ,BrazilWediscusspossibledeviationsfromQEDproducedbyavirtualexcitedspin-3/2√leptoninthe+−
reactionee−→2γ.DatarecordedbytheOPALCollaborationatac.m.energy
arXiv:hep-ph/9907364v1 14 Jul 1999Lint=
(2)
Λe
µν¯∗Ψ,µγν(cLψL+cRψR)F
s=183GeVandtotalintegratedluminosityof56.2pb−1to
obtainlowerboundsonthemassscaleΛ,aswellasonthespin-3/2excited-leptonmassM3/2andcouplingstrengthscL,R.Thecalculationofthedifferentialcrosssectionfortwo-photonproductionwasperformedattreelevel,taking
(2)(1)
intoaccountthenonstandardcouplingsspecifiedbyLintandLint.Theresultingexpressionsaregivenby
dσ(i)
dΩ
+α2
QED
∗†
e-mailaddress:walsh@if.ufrj.bre-mailaddress:ramalho@if.ufrj.br
1
TABLEI.Coefficientsan(y)forthepolynomialsofthecorrectionsF±.
a8
(1)A+
(i)
a70
a6−1
a52y+4
a4
−10y2+2y
−53y+13
a3
−32y2−28y
a28y3+48y2+52y+5−4y2−8y−14−11y−12
a1
−16y3−32y2−38y−4
0
a0
80y3+26y2+10y+140y2+5y
+13y−2
0
B+
(1)
00000
C(1)
0000−2y+87y+8
A−
(2)
1−620y+14−96y−14
84y2+180y
−264y2−160y
+1472y3+288y2+60y−14−144y3−120y2
+672y3+12y2−4y−1
C(2)
000−13−2y−26y−2−6y+32y−1
Λ4Λ8
22
(c2R±cL)22(c2R±cL)
(1−y−x)
+
2yB±(x,y)
Λ2
4yB(2)(x,y)
(1)
2
(c2R+cL)
(1−y−x)
cRcL
++
D(1)(x,y)D(2)(x,y)
(1−y−x)
+
Λ4(1−y−x)
s=183GeV,alongwith
thecorrespondingpredictionforQEDandOPALexperimentaldata.InlinewithOPALexperimentalprocedure,weconsidertheeventangleθdefinedsothatcosθispositive,sincethetwophotonsareidentical,andanexperimentalcutcosθ<0.97.ThecompositenessscaleΛwastakentobeequaltotheexotic-leptonmass,withnumericalvaluesconsistentwiththe95%confidencelevellowerboundsthatwederivedforeachinteraction,asdiscussedinthefollowing.
10dσ/dΩ [pb/sr]10,00,20,40,60,81,0cos θFIG.1.Angulardistributionat
√Wederivedlowerboundsontheexotic-leptonmassandcouplingsbyaχ2fit,defining
χ(i)=
2
σ(i)−σexp
k
k
k
160140M3/2 [GeV]120exdclued100800,00,51,01,522,0cLFIG.3.SameasFig.2butforinteractionLint.s=183GeV.
(2)Thenextgenerationoflineare+e−colliders(NLC)willgiveimportantcontributionstothesearchofnonstandard(2)(1)physics.Angulardistributionsfora500GeVNLCareshowninFigs.4and5,consideringinteractionsLintandLintrespectively,andassuminganinputmassM3/2=250GeVorthelowerboundwhichweobtainedfromtheOPALdata.Weconsidredacutinthepolarangleθsuchthat5o<θ<175o.Asexpected,crosssectionsgrowfaster
(2)
withenergyinthepresenceofthenonstandardinteractionsunderdiscussion,themoresointhecaseofLint,whichcontainsahigher-dimensionaloperator.Inordertoestimatelowerboundsinthiscase,wedefinedχ2functions
χ(i)=
2
N(i)k−NSM
k
k
SM+(NSMδ)2Nkk
thecorrespondingerror,inwhichthePoisson-distributedstatisticalerroriscombinedinquadraturewiththesystem-aticerror.Weconsideredaconservativeintegratedluminosityof10fb−1andatypicalsystematicerrorδ=2%forameasurementina500GeVNLC.Theresultsofthisχ2analysisaredisplayedinFigs.6and7.Clearly,thelowerboundscanbeconsiderablyimprovedbytheexperimentsinthefuturee+e−colliders.
3
10dσ/dΩ [pb/sr]10,10,00,20,40,60,81,0cos θFIG.4.Angulardistributionat√s=500GeV.The
solidlinerepresentstheQEDprediction,whereasthedashed(dottted)curveshowsthetotalangularspectruminthe
(2)
presenceofthenonstandardinteractionLint,foraninputmassM3/2=142GeV(250GeV).
550500450M3/2 [GeV]4003503002502000,00,5exdclued1,01,522,0cL√
FIG.6.SameasFig.2butforaNLCenergys=500GeV.
WethankK.SachsfromOPALforthedatausedinthispaper.ThisworkwaspartlysupportedbyCNPqandFINEP.(1985).
[4]OPALCollaboration,K.Ackerstaffetal.,Phys.Lett.B438,379(1998).
[5]ALEPHCollaboration,R.Barateetal.,Phys.Lett.B429,201(1998);DELPHICollaboration,P.Abreuetal.,ibid.B
433,429(1998).
因篇幅问题不能全部显示,请点此查看更多更全内容