一、选择题:
1.如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为( ) A.30° B.60° C.90° D.120°
3.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( ) A.90° B.110° C.100° D.120° 4.已知等腰三角形的一个外角是120°,则它是( )
A.等腰直角三角形; B.一般的等腰三角形; C.等边三角形; D.等腰钝角三角形 5.如图1所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE等于( ) A.120° B.115° C.110° D.105°
ADFBEC
6.如图2所示,在△ABC中,E,F分别在AB,AC上,则下列各式不能成立的是( ) A.∠BOC=∠2+∠6+∠A; B.∠2=∠5-∠A; C.∠5=∠1+∠4; D.∠1=∠ABC+∠4
AE2154F6B3C
二、填空题:
1.三角形的三个外角中,最多有_______个锐角. 2.如图所示,∠1=_______.
801140
3.如果一个三角形的各内角与一个外角的和是225°,则与这个外角相邻的内角是____度. 4.已知等腰三角形的一个外角为150°,则它的底角为_____.
三、解答题
如图所示,在△ABC中,∠A=70°,BO,CO分别平分∠ABC和∠ACB,求∠BOC的度数.
参考答案:
一、1.C 2.C 3.C 4. B 5.C
AOBC
二、1.1 2.120° 3.95 4.30°或75° 三、∠BOC=125°
专项训练二 概率初步
一、选择题
1.(徐州中考)下列事件中的不可能事件是( )
A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上 C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360° 2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( ) A.25% B.50% C.75% D.85%
3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )
1132A. B. C. D. 105105
4.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选
择“参加社会调查”的概率为( )
1113A. B. C. D. 4324
5.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )
1111A. B. C. D. 2346
6.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )
1111A. B. C. D. 36912
7.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )
33513A. B. C. D. 168816
第7题图 第8题图
8.(2016·呼和浩特中考)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )
1πππA. B. C. D. 6685
二、填空题
1123
9.已知四个点的坐标分别是(-1,1),(2,2),,,-5,-,从中随机选取一个点,在反比例函数y=图象上的
5x32概率是________.
10.(黄石中考)如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是________.
11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.
12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5
名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.
13.(重庆中考)点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是________.
14.★从-1,1,2这三个数字中,随机抽取一个数记为a,那么,使关于x的一次函数y=2x+a的图象与x轴、y轴围x+2≤a,1
成的三角形的面积为,且使关于x的不等式组有解的概率为________.
41-x≤2a三、解答题
15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.
(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:
事件A 必然事件 随机事件 m的值 ________ ________ 4
(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.
5
16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持
人去掉其中一题的一个错误选项).
(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________; (2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________; (3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.
17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.
(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;
(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.
18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:
摸球总 次数 “和为 10 20 30 60 90 120 180 240 330 450 8”出 现的频数 “和为8”出 现的频率 2 10 13 24 30 37 58 82 110 150 0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33 (1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________; 1
(2)如果摸出的这两个小球上数字之和为9的概率是,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果
3
x的值不可以取4,请写出一个符合要求的x的值.
参考答案与解析
1.D 2.B 3.C 4.A 5.A 6.C 7.C
12+9-15
8.B 解析:∵AB=15,BC=12,AC=9,∴AB=BC+AC,∴△ABC为直角三角形,∴△ABC的内切圆半径为=2
2
2
2
119ππ
3,∴S△ABC=AC·BC=×12×9=54,S圆=9π,∴小鸟落在花圃上的概率为=.
22546
11311
9. 10. 11.15 12. 13. 14. 2255315.解:(1)4 2或3 (2)根据题意得
6+m4
=,解得m=2,所以m的值为2. 105
111
16.解:(1) 解析:第一道肯定能对,第二道对的概率为,所以锐锐通关的概率为;
444
111
(2) 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为,第二道题对的概率为,所以锐锐能通关632111
的概率为×=;
236
(3)锐锐将每道题各用一次“求助”,分别用A,B表示剩下的第一道单选题的2个选项,a,b,c表示剩下的第二道单选题
1
的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为.
6
17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取1
相同数字的结果有3种,所以两人抽取相同数字的概率为;
3
(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的5151
概率为,乙获胜的概率为.∵>,∴甲获胜的概率大,游戏不公平.
9393
2 3 5
18.解:(1)0.33
(2)图略,当x为4时,数字和为9的概率为
2 3 5 2 2 3 2 5 2 2 3 3 3 5 3 2 5 3 5 5 5 211
=≠,所以x不能取4;当x=6时,摸出的两个小球上数字之和为9的1263
1概率是.
3
因篇幅问题不能全部显示,请点此查看更多更全内容