DIS98
A.Goussiou
DepartmentofPhysicsandAstronomyStateUniversityofNewYorkatStonyBrookStonyBrook,NewYork11794,U.S.A.
E-mail:goussiou@fnal.govM.McDermott
DepartmentofPhysicsandAstronomy,BrunswickSt,
UniversityofManchester,M139PL,England
E-mail:mm@a13.ph.man.ac.uk
N.N.Nikolaev
Institutf.Kernphysik,ForschungszentrumJ¨ulich,D-52425J¨ulich,Germany&L.D.LandauInstituteforTheoreticalPhysics,Kosygina2,117334Moscow,Russia
E-mail:N.Nikolaev@fz-juelich.de
R.Roosen
I.I.H.E,VrijeUniversiteitBrussel,Pleinlaan2,1050Brussels,BelgiumE-mail:roosen@hep.iihe.ac.be
K.Piotrzkowski
DESY,Notkestrasse85,D-22607HamburgGermany
E-mail:krzysztof.piotrzkowski@desy.de
Recentexperimentalandtheoreticaldevelopmentsintheunderstandingofhighenergydiffraction,presentedintheworkinggroupondiffractionatDIS98inBrus-sels,aresummarised.Atemplate,givingthedefinitionofthemostcommonlyusedkinematicalvariablesindiffraction,whichwasprovidedintheworkinggroupsessions,isreproducedasaappendix.Referencestooriginalpapersmaybefoundwithintheindividualcontributions.
1Introduction
1.1
Whyisdiffractioninteresting?
Diffractioncombinesaspectsofparticleandwave-likenatureofhighenergyscatteringandstraddlestheinterfacebetweenshortandlongdistancedomainsofthestronginteraction.Apartfrombeingaveryinterestingprobleminitsownright,itisalsoausefulplacetotrytounderstandthetransitionbetweenreliable,perturbativeQCDcalculationsandtheremarkablysuccessfulstrong
1
interactionphenomenologyofReggetheory.Suchanunderstandingisclearlynecessaryifoneistoeverunderstandthemostdifficultandimportantprobleminstronginteractionphysics:confinement.
Giventhatafundamentalunderstandingofthistransitionisstilllacking,progressinthisareamaybecharacterisedasfollows:oneinvestigateswhatcanbeunderstoodintheregimeofpQCD,extrapolatesthishardQCDwisdomintothesoftdomain,oftenusingexperienceandintuitiongainedfromsoftphysicsphenomenology,andthenconfrontstheresultswiththedata.Thisnecessarilyleadstoastrongpositivefeedbackbetweennewexperimentalresultsindiffrac-tionandthedevelopmentandrefinementofthephenomenologicalmodels.AgreatdealofexperimentalandtheoreticalprogresshasbeenmadesinceDIS97whichwewishtosummarisehere.1.2
Physicalpictureofhighenergydiffraction
Peschanski1remindedusofaverysimplephysicalpicturefordiffractionbasedonanopticalmodel,developedmanyyearsago.Imaginetwohadronsscatter-ingatveryhighenergies.Quantummechanicstellusthateachhadronisacomplicatedevolvingsuperpositionofvirtualstates(atlongdistancesonecanthinkoftheprotonemittingandreabsorbingpions,etc;atshortdistancesoneimaginesfluctuationsofthepartonicstructuredueQCDradiation).Lorentzcontractionoftheseultra-relativisticsystemsensuresthatthissuperpositionisessentiallyfrozenonthe‘snapshot’timescaleoftheinteractionofthetwosystems,thuseachcomponentconstitutesaneigenstateoftheinteraction.Dis-tincteigenstateswillsufferdifferentlevelsofattenuationinthenuclearmediumoftheoppositehadronaccordingtotheirphysicalcharacteristics(numberofconstituents/partons,transversesizeetc).Asaresultthescatteredstateisdifferentfromthebeamstateand,inadditiontoelasticscattering,newex-clusiveandcontinuumstatesare‘diffractedintoexistence’bytheinteraction.Insuchdiffractiveproductionthereisalargerapiditygap(LRG)betweenthebeamexcitationandthetargetrecoilandtheenergydependenceissimilartothatofelasticscattering:intheReggeterminologybothelasticscatteringanddiffractiveexcitationaregovernedbyPomeron(vacuum)exchangeinthet-channel.
IfthePomeronisanisolatedReggepolewiththetrajectoryj=αIP(t)≈
−αIP(t)
.αIP(0)+α′IPt,thendiffractiveamplitudesareexpectedtobehaveasxIP
Itwouldcertainlybeinterestingtorelatethisriseinenergywiththatseenintheprotonstructurefunctionatsmall-x.TheReggephenomenologyofhadronictotalcrosssectionsprovidesausefulreferencevalue
αsoftIP(0)≈1.09.
2
(1)
TheQCDvacuumsingularityseemstobemorecomplexthananisolatedpolewithaneffectivePomerontrajectorythatchangeswiththehardnessoftheprocess.AnyvaluelargerthanthatgiveninEq.(1)maybeconsideredasevidenceforacontributionfromhardscattering.22.1
DiffractionindeepinelasticscatteringInclusivedata
ThetwomeasurementsreportedonbyKowalski&LindemannforZEUS2
D(3)
andbyNichollsforH13,regardingthediffractivestructurefunctionF2,arebasedontwodifferentmethodsandcoverdifferentkinematicranges.TheZEUSdataareanalysedinthekinematicrange7≤Q2≤140GeV2andMX≤15GeVandarebasedonthe1994data.ThediffractivedataareobtainedfromanexcessofeventsovertheextrapolatedinvariantmassdistributionatlargeMXingenericDISevents.TheH1diffractivedataareobtainedfromeventswithalargerapiditygapintheforwarddirection.TheH1diffractivestructurefunctionanalysisisbasedonthe1994data,complementedbythenew1995shifted-vertexdatawhichcovers0.4≤Q2≤5GeV2,0.001≤β≤0.65,therebyextendingthe1994measurementstolowerQ2,βandxIP.A
D(3)
comparisonoftheinclusivexIP.F2dataofH1,ZEUSandoftheZEUSLeadingProtonSpectrometer(LPS)datashowsthatthereisbroadagreement,althoughinthelow-Q2binsdifferencesareobserved.PhenomenologicalReggemodelfitsasusedpreviously,basedonaPomeronandReggeontrajectorydescribetheH1datawell.Theinterceptofthetrajectoriesareconsistentwiththeearlierpublishedvaluesand,giventhelargeerrors,noevidenceisfoundforapossibledependenceofthePomeroninterceptonQ2.Thescalingviolations,
D(3)
observedearlierinxIP.F2(xIP=0.005)ofthe1994dataathigherQ2,arereconfirmedbythenewdataatlowerQ2.TheanalysisofthedataintermsofpartondistributionfunctionssubjectedtoaNLODGLAPevolution,againindicatethatthegluoniccontentofthePomeronisoftheorderof(80-90)%withagluondistributionwhichislargeatβ∼1,incontrasttoamuchsoftergluoncontentintheproton.
FromtheZEUSanalysisaninterceptofαIP(0)isdeducedwhichagreeswiththeH1valueobtainedfromthephenomenologicalfitsofthe1994data.
αIP(0)=1.16±0.01(stat)±0.02(sys)(ZEUS)
αIP(0)=1.203±0.020(stat)±0.013(sys)(H1-‘94data)
(2)(3)
ThisinterceptisclearlylargerthanthatofEq.(1),whereastheReggeoninter-cept,obtainedbyH1,isclosetoαR(0)≈0.5ofstandardReggetheory.The
3
ZEUSresultsforxIP·FD(2)
2indicateaweakβ-dependenceandare,withinerrors,consistentwithscaling.2.2
ModelsofdiffractiveDIS
Diffractionoccursinthesmall-xregimeofDIScorrespondingtothehighen-ergy(Regge)limitoftheγ∗psub-process(W2≫Q2,M2
QCD,themulti-partonFockstatesofthephotonarethep).Intherealmofnaturaldiffractioneigenstates.Atlowestorderinαstheseareqq¯pairs:colourdipolescharac-terisedbytransversesize,orequivalentlyimpactparameter,andmomentum-fractionsharing,z.Thedipolescatteringamplitudesareproportionaltothetransverseareaoccupiedbythedipole,henceitislargesizeconfigurationswhichareprimarilyresponsiblefordiffraction(theyalsoturnouttobeasym-metricconfigurationsz≪1,or1−z≪1).Asthetransversesize,or‘scanningradius’,oftheinteractingdipolesisdecreasedoneexpectsatransitionfromsofttoharddiffraction.Genovese4reviewedmajorapplicationsofthecolourdipolepicturetodiffractiveDIS.
Usingthepredictionsofadipolemodelapproach,basedonleading-logBFKLdynamicsandthelargeNcapproximation,Royon6presentedfitstotheH1diffractivedata,aswellastotheF2data.Boththeprotonandvirtualphotonaretreatedasasuperpositionofdipolesandbothsingleanddoublediffractionareincludedintermsofelasticonium-protonscatteringandasumofinelasticdipole-dipolescattering.Thegrossfeaturesoftheexperimentaldatacanbereproducedwithrelativefewparameters,buttheapplicabilityoftheseapproximationstodiffractiveDISiscertainlyquestionable,duetothelargesoftcontributiontodiffractiveDIS.
Kopeliovich7discussedhowDrell-Yanproduction,whichisusuallytreatedasaqq¯→γ∗annihilation,canbereformulatedinthecolourdipolepictureasasortofdiffractiveexcitationofaFockstateoftheprojectilewhichcontainstheγ∗asaconstituent.Inthisway,thesimilaritybetweenDrell-YanandDISprocessesbecomesapparent.
Itisusefultofocusattentiononthose(relativerare)diffractiveprocesseswhichalsocontainahardscale,inadditiontoQ2,suchasaheavyquarkmassorhigh-ptpair,tobereallysurethatwecantrustourperturbativecalcula-tions.Theknowledgegainedcanthenbeusedtotrytobuildanunderstandingofthewiderpictureofdiffractiveprocesses.TheQCDmodelforthis‘hard’diffractionistheexchangeoftwointeractinggluonsinacolour-singletconfig-urationinthet-channel,whichdominatestheQCDevolutionoftheprotonseastructurefunctionatsmallx.Thediffractiveamplitudesarerelatedtothetargetgluonstructurefunction,G(xIP,
scale
Q2
andalackofoverallReggefactorization
intoanxIP-dependentfluxanda(β,Q2)-dependentstructurefunctionofthePomeron,apartfromtheregionofsmallβ.Furthermore,thevaluesof
the(Regge-factorizationbreaking!)Q2-dependenceofthexIPexponentinthetransverseqq¯term.Inaddition,theH1dataalsoallowasecondsolutionin
whichtheβ-dependenceoftheFoftheβ,QrangeofqT
theq¯gcontributionismuchharderanddominates
overmuch2
data.2.3
Arediffractiveeventsuniversal?
AtthemomenttheRegge(Ingelman-Schlein)factorizationansatzremainstheonlytooltorelatediffractivecrosssectionsinDISandhadroniccollisions.Itisoflimitedapplicabilityandabetterunderstandingoftheconsequencesoftheprocess-dependenthardnessscale
3.1Vectormesonproduction:data
ThestudyofdiffractivevectormesonproductionatHERAremainsaveryac-tiveresearchfieldandisanidealplacetostudythetransitionbetweenhardandsoftdiffraction.Theformerischaracterisedbystrongerenergyrises,broaderdiffractivepeaksandconsiderablylessshrinkagethanthelatter.Thefirstob-servationofthephotoproductionoftheΥ-familywasreportedforZEUSbyBruni11.Across-section(σγp→Υ(nS)p∗BR(Υ(nS)→µ+µ−)forn=1,2,3)of≈15pbhasbeenextractedusingthefull95-97datastatistics,thebranchingratiosΥ(nS)→µ+µ−,anestimateofproton-dissociation,andanassumption
′′′
ofthesamerelativecontributionsofΥ(1S),Υ(2S)andΥ(3S)statesasmea-suredattheTevatron.InspiteofthelargescalegivenbytheΥmass(whichshouldmakepQCDpredictionreliable),eventakingintoaccountthelargeun-certaintiesduetothechoiceofthegluondensity,thescaleitissampledat,andthechoiceoflight-conewavefunctionofthevectormeson,itturnsoutthatthepredictionsofapQCDtwo-gluonexchangemodel,whichsuccessfullydescribestheJ/ψproduction,areaboutanorderofmagnitudebelowthemeasuredcrosssection.Clearlyfurtherdevelopmentsinboththeexperimentalmeasurement(reductionoflargeerrors)andtheoreticalunderstandingareurgentlyrequired.Monteiro12reportedforZEUSonexclusiveandproton-dissociativepho-toproductionofρ0,φandJ/ψmesonsatW≈100GeVand0<|t|<4GeV2.UsingtheReggeformalismandthemeasuredelasticcross-sections,aswellasthelow-WdataandotherHERAmeasurementsatlow|t|,theexchangedPomerontrajectorycouldbedirectlydeterminedupto|t|≈1GeV2.Fortheρ0andφproductionthenominal‘soft’(linear)trajectoryhasbeenmea-suredwithaninterceptcompatiblewithEq.(1).Theslopeofthetrajectoryisnon-zero,butitissignificantlysmallerthan0.25GeV−2.Incontrast,forJ/ψexclusiveproduction,thecorrespondingtrajectoryhasamuchhigherinterceptanditsslopeissmall,compatiblewithzero,indicativeofasmalltransversesizeanda‘hard’diffractivemechanism.
Thompson13reportedstudiesofdiffractiveJ/ψphoto-andelectropro-ductionandalsophotoproductionathigh-|t|forH1.For|t|>1GeVthemeasuredcross-sectionforproton-dissociativediffractioncanbesuccessfullydescribedbyamodelbasedonLOBFKL(seealsoSec.(7)).Newmeasure-mentsofexclusiveelectroproductionofthesmall-sizeJ/ψconfirmthestronglyrisingW-dependencealreadyseeninphotoproduction.Theratioofψ(2S)toJ/ψproductionisfoundtoincreasefromabout0.15inphotoproductiontoabout0.5atQ2≈15GeV2,withlargeerrors.Thisreflectstheincreaseinhardnessoftheproductionscaleofψ(2S)withQ2,whichissimilarinsizetothepion,andmayrevealimportantinformationaboutthelight-conewave-7
functionsoftheseheavyvectormesons.
Thediffractiveelectroproductionofρ0mesonswasreportedbyClerbaux14forH1,Tytgat15forHERMESandKananov16forZEUS(alsoφmesons).AllthreeexperimentsmeasuredtheratioR=σL/σTfromphotoproductionuptolarge-Q2production.TheQ2-dependenceofRisconsistentwithalinearincreaseuptoQ2≈0.5GeV2,beyondwhichthisstrongincreasebecomessignificantlyweaker.Thequantitativedescriptionofthisbehaviour,whichisnowwellestablishedexperimentally,isachallengetothepQCDbasedmodels.
Fredj17reportedonaninterestingcontributiontodiffractivephysicsfromtheL3experimentatLEP-themeasurementoftheγγtotalcrosssection
2(α(0)−1)
extendingtheenergyrangeuptoWγγ≈130GeV.FitstoWγγIPgiveeffectivePomeronintercepts,dependingontheunfoldingmethod,ofαIP(0)≈1.16±0.03(PHOJETMontoCarlo)andαIP(0)≈1.14±0.02(PYTHIAMonteCarlo),inexcessofthevalueinEq.(1).3.2
Vectormesonproduction:theory
Zoller18presentedresultsonexpectationsfortheforwarddiffractiveslope,BD,withintheframeworkofthegBFKLdipolemodel.Threecomponentscanbeidentifiedcomingfromtheproton,theevolutionandfromthescat-teringdipole.AsQ2increasesthedipolesgetsmallerandthelattermakesasmallerandsmallercontributiontoBD,supportingthewell-establishednotionthatthegeometricalsizeofthescatteringobjectsdeterminesBD.Unfortu-natelythecurrentexperimentalerrorsfromHERAaretoobigtoobservethisQ2-dependenceinJ/ψproductionyet,butforlightervectormesonsithasbeenwellestablishedexperimentally.Anapproximateflavourindependenceis
2
observedinthevariableQ2+MV.
Theanalyses14,15,16ofthevectormesonproductiondata,undertheas-sumptionofthes-channelhelicityconservation,giveavalueforR=σL/σTwhichtendstosaturateatlargeQ2,whereasthetheoreticalestimatespredictasteadyrise,albeitslowerthanlinearwithQ2.IntheframeworkofthetwogluonexchangemodelofLow-Nussinov,Royen19discussedthesensitivityofRtomodificationsofthewavefunctionofthevectormesonwiththeconclusionthattheFermimotioneffectsinthewavefunctioncantamethegrowthofRwithoutspoilingotherpredictions,inthekinematicregiondefinedbythedata.3.3
Off-diagonalkinematics
Aparticularlyactiveareaofresearchatpresentconcernsnon-diagonaloroff-forwardpartondistributionswhichariseinexclusivediffractiveprocessessuch
8
asheavyvectormesonproduction,deeplyvirtualComptonscattering(DVCS)andphotoproductionofdijets.
Conventionalpartondistributionsinvolveproductsofoperatorssandwichedbetweenidenticalhadronicstates(e.gincomingandoutgoingprotonsinthesamequantumstate).Thefinitemomentumtransfertotheproton,innon-diagonalkinematics,meansthattheoutgoinghadron(evenifitisaproton)isinadifferentquantumstate.Thisleadstouniversaldistributionswhicharegivenbythequantum-mechanicalinterferencebetweenstatescharacterisedbythedifferenceinthemomentumfractionscarriedbytheoutgoing(x1)andre-turning(x2)partons,xIP=x1−x2,andassuchprobenewnon-perturbativeinformationabouttheproton.Arenormalizationgroupanalysisoftheoper-atorsleadstoevolutionequations,dependentonxIP,whichareknownonlytoleading-loginQ2,atpresent.Forx2>0theyreducetotheDGLAPequationsinthelimitxIP→0.Forx2<0theyobeyERBLequationsforthedistributionamplitudes.Intheleadingln(1/x)approximation,atsmall-x,thenon-diagonaldistributionscoincidewiththeconventional(diagonal)gluondistributions.
Golec-Biernat20presentedinterestingresultsondiffractivedijetproduc-tionwhichshowedthatthenext-to-leadingln(1/x)correctionsforthenon-diagonalityoftheprocessleadstoamarkedenhancementofjetproduction.Itwouldbeinterestingtoseetheimpactofothernon-leadingcorrectionsonthisfinding.
Strikman21presentedananalysisoftherelatedoff-diagonalDVCS,andpointedoutthefeasibilityofmeasuringtherealpartoftheDVCSamplitudeatHERA,which,viadispersionrelations,constrainsthebehaviouroftheimag-inarypartoftheDVCSamplitude,andbyextensionF2,atsmallerx-valuesthanthoseintheHERAkinematicrange.
Inconventionaldefinitionsofpartondistributions,afterfactorizationintohardandsoftphysics,oneexploitstheopticaltheoremandtreatsthe‘softblob’(andthehardblob)asthoughitwereonmass-shell(asaresultofthecut).Byconsideringthesingularitystructureofthefour-pointGreen’sfunctionforthesoftblobinthenon-diagonalcaseDiehl22hasshownthatonemaytreatthesoftpartofthediagramasthoughithadbeencutandexplainssomeoftheimportantphysicalimplicationsofthisresult.4
Diffractivefinalstates
VariousaspectsofdiffractivefinalstateshavebeenreportedbyBuniatian23andWaugh24forH1(energyflow,seagullplot,averagechargedparticlemulti-plicities,meanmultiplicitiesintheforward/backwardhemispheres)andWich-9
mann25forZEUS(thrustandsphericityanalysis)collaborations.Theglobalfeaturesofdiffractivefinalstates,i.e.therapidityandtransversemomentumdistributionsatsmallk⊥,meanmultiplicitiesandmultiplicitydistributions,theseagullplot,aresimilartothoseinhadroniccollisions,hadronicdiffrac-tion,inclusiveDISande+e−annihilation,atthesamemassofthehadronicstates.Non-trivialdifferencesarefoundwhenonelooksatthefinestructureoffinalstates.ThethrustanalysisreportedbyZEUSisperformedonadiffractiveeventsampleselectedbytheLPS.AcomparisonoftheseresultswiththoseobtainedfromtheLRGeventsinH1indicatesthattheaverageeventthrustintheZEUSdataissystematicallyhigheralthough,becauseofthelargeerrors,notinconsistentwiththeH1findings.However,theaveragethrustintheLRGeventsisdefinitelysmallerthaninthee+e−data.
Thestumblingblockintheinterpretationofthesedataisthatthetheoret-icalunderstandingofinitialandfinalstateradiationandoftherelatedvirtualradiativecorrectionstotheformationofdiffractivefinalstates,islaggingbe-hindtherapidexperimentaldevelopment.Theexperimentalistshavetakentheleadand,atthemoment,theRAPGAPMonteCarlo,basedontheIngelman-Schleinapproach,remainstheonlytooltodescribetheresolvedPomeronvia
D(3)
partonicdensitieswhichareobtainedfromfitstotheH1xIP.F2struc-turefunction.TheprincipalfindingisthatthisparticularversionofRAP-GAPdescribesalmostallofthediffractivehadronicfinalstatesrangingfromenergyflowtoparticlecorrelations.Intermsofthismodelalargegluonic
D(2)
Pomeroncontent,asdeterminedfromthexIP.F2analysis,isessentialforagooddescriptionofthedata,althoughitshouldbeemphasizedthatotherMonteCarlo’slikeLEPTO6.5,basedonthesoftcolourinteractionmodelandwhichdoesnotcontainanyspecialmechanismofdiffractiondescribesthedataequallywell.Atpresent,thedatadonotallowadiscriminationbetweentheseconceptuallydifferentmodelstobemade.
FromthetheoreticalpointofviewonealsoshouldtakeintoaccountthatthepresentlyavailableMonteCarlomodelsareassuminganillegitimateReggefactorisation,inwhichhardscaledependenciesonxIPanβasfoundinthe-oreticalQCDanalyses,andwhichcharacterisethefinalstate,areneglected.Forinstance,onetreatsthecharmproductionasentirelyduetothefamiliarphoton-gluonfusion,neglectingthedirectcharm-anticharmexcitationwhichsometheoristsclaimtobesubstantial.Inthisapproximation,inordertore-producethediffractivecharmsignalreportedbyThompson13oneneedsahardglueinthePomeronfits10.ThereforetheconclusionsdrawnfromtheseMonteCarlostudiesastothephysicalpictureunderlyingthediffractivefinalstatesshouldbehandledwithcare.
10
5TheForwardRegion
Inelasticscattering,thetypicalimpactparameterisasumofthesizeofthetarget,theprojectileandoftherangeofinteractionbetweenthetargetandprojectileconstituents.Inthegenericdiffractivereactionap→XY,thediffractiveslopeBDisclosetotheslopeofelastichadronicscattering,Bd∼10
22
GeV−2intheexclusivelimitofsmallmassstates,MX,Y≈O(MP),butthecontributionsfromthea→Xandp→YtransitionverticesareknowntovanishassoonasXorYarehighmasscontinuumstates,soBDdecreaseswiththeincreaseofMX,MY.Bythesametoken,onlythesizeofthescatteredprotonandtheinteractionrangecontributetoBDforsinglediffraction.HenceoneexpectsauniversalvalueforBD∼6-7GeV−2insinglediffractionforallprojectilesaintocontinuumX(includinghadrons,a=p,π,K,aswellasrealandvirtualphotonsa=γ,γ∗)ingoodagreementwiththeobservations.Therelateduniversalityofthe|t|-dependenceistobeexpectedatlarger|t|,andMenghaspresentedempiricalevidenceforthat26.Pronyaev8hasreportedanevaluationofBDfordiffractiveDISep→e′p′Xinthecolourdipolepictureofdiffraction;anontrivialpredictionisasubstantialriseofthediffractionslopeBDfromtheexclusivelimitβ≈1,whenXisthe1Svectormeson,toexcitationofcontinuumatβ∼0.5.
Thecrucialtheoreticalpointaboutleadingnucleonproductionfornon-diffractivez≈1−xIP<∼0.9,andinthefragmentationofprotonsingeneral,isthattheQCDhardnessscaleforsecondaryparticles(h)insemi-inclusiveDIS,ep→e′Xh,graduallydecreasesfromQ2inthevirtualphoton(current)frag-mentationregiontoasoft,hadronic,scaleintheprotonfragmentationregion.Thissuggestsasimilaritybetweentheinclusivespectraofleadingbaryonsinhighenergyhadron-protonandvirtualphoton-proton(DIS)collisions.ThestandardQCDhadronizationmodelsfailinthismanifestlysoftpartofthephasespace,butwereneverreallymeanttodescribeit.
Thenon-perturbativemechanisms-pionexchangefortheneutronproduc-tionandPomeron+pion+Reggeonexchangefortheleadingprotonproduction-havebeendiscussedbyD’Alesio27andNikolaev28,respectively.Ashasbeenunderstoodformanyyears,taggingleadingneutronsselectsDISoffpi-ons.However,theextractionofthepionstructurefunctionatsmallvaluesoftheBjorkenvariablexπ=βrequirestheknowledgeofthefluxofpions.D’Alesiofocusedonthemodeldependencecausedbyabsorptioncorrections,whicharedifferentforleadingneutronproductioninhadroniccollisionsandDISandspoiltheReggefactorizationleadingtoanuncertaintyof20−30%intheassociatednormalizationbetweenprocesses(asimilaranalysishasbeenreportedin28).Theconclusionisthatabsorptioneffectsareunderreasonable
11
control,anddonotprecludetheexperimentaldeterminationsofthegrossfea-turesofthepionstructurefunction.TherelatedabsorptioncorrectionsdefinetheBjorken’sgapsurvivalprobabilityinharddiffractiveppcollisions.Thex,Q2evolutionpropertiesoftheleadingneutronproductionasreportedbyNunnemannforH129andGarfagniniforZEUS30areconsistentwithexpec-tationsoftheDGLAPevolutionofthepionstructurefunction.
ThepQCD-motivatedevaluationofReggeonexchangeindiffractiveDIShasbeenreportedbySch¨afer5.ReggeonexchangeisevaluatedintermsofthevalencequarkdistributionsintheprotonandcomesoutatthesameorderofmagnitudeastheH1evaluations.InthisanalysisthestrongestpossibleconstructiveinterferenceofthePomeron(IP)andReggeonfexchangesap-pears,incontrasttoexpectationsbasedontreatingthePomeronandReggeonashadronicstates.Furthermore,heshowedthatthePomeron,Reggeon,andtheIPfinterferencestructurefunctionsmusthaveasimilarlarge-βbehaviourandthattheβ,Q2evolutionofallthesestructurefunctionsmustbesimilar.Thelatterpointleadstoanapproximatelyx,Q2-independentyieldoflead-ingprotons.Nunnemann29reportedagoodagreementoftheH1dataonleadingprotonswiththePomeron+pion+Reggeonexchangemodel31,whereasLEPTO6.5MonteCarlofailstoreproducetheQ2-dependenceoftheobservedcrosssection.Inprinciple,Reggeonexchangeisconstrainedbythediffrac-tivedata,butmoredetailednumericalevaluationsoftheIPfinterferenceareneededforaunifieddescriptionoftheReggeoneffectsinboththediffractiveregionz>∼0.9,andforz<∼0.9.6Diffractioninproton-protonscattering6.1
NewdatafromtheTevatron
HarddiffractionattheTevatronhasbeenobservedbyboththeDØ(reportedbyRubinov32)andCDF(reportedbyBorras33)collaborations.Diffractiveeventsareselectedbyrequiringalargerapiditygapand/orbyrecordingabeamparticlerecoil.ThehardscaleisseteitherbyjetswithlargeET,orbythemassofadiffractively-producedW-boson(CDF).Inhardsingle-diffractionwithaforwardrapiditygapthegapfraction,definedastheexcessofeventsatlowmultiplicityovertheextrapolatedmultiplicitydistributionfromnon-diffractivedijetevents,hasbeenmeasured.Thedependenceofthegapfractiononηboostandthegaplocationandsizeindicatesthattheseeventsareindeedconsistentwithacoloursingletproductionmechanism.TheDØcollaborationattwodifferentenergies(
√gapfractionsmeasuredbythehardpartonicstructure.Combiningtheratio’sofdiffractivetonon-diffractiveWanddijetproduction,theCDFcollaborationdeterminedafractionofhardgluonsinthePomeronequalto0.7±0.2.ThisvalueentailsamomentumfractionofthehardpartonsinthePomeronwhichisconsistentwithresultsfromtheZEUSexperimentonlyafterintroducingadiscrepancyfactorD=0.18(cf.fluxrenormalization).Bothcollaborationsalsoobservedeventswithtwocentraljetsandtwogapsintheforwardrapidityregions,consistentwithharddoublePomeronexchange.Therate,R(DPE/SD)=0.26±0.05(stat)±0.05(syst.)%,aswellasthekinematicsofthedijetsarewellreproducedbyMonteCarlo,providedarenormalizedIPfluxisused.
ThefractionofdijeteventswithacentralrapiditygaphasbeenbyDØ(reportedbyGoussiou)andCDF(reportedbyBorras35
)at
√measured
34=3.4±1.3;
RfCDF=
JGJ(630)
fJGJ(1800)
mustinvolvepurePomeronexchange.Hence,inthemoderateenergyregionrelevanttotherapiditygapsintheTevatrondiffractivedata,theinterceptofthePomeronmustbeclosetounity,whichremovestherapidgrowthofthetripleReggecrosssectionfromtheFNAL-ISRtoTevatronandresolvesDino’sparadox.Tanhasdiscussedflavouring-theeffectofopeningnewin-elasticchannels-asthemechanismsfortheenergydependentinterceptofthePomeron.Tan’smechanismcanbeconfirmedorruledoutatLHC.
Atpresent,theoryisnotabletomeetthechallengeoftheextremelyin-terestingdataonhardjetproductioninrapiditygapeventsobservedinmanyjetandW-bosonproductionchannels,attheTevatron.Bjorken’spointthatabsorptioneffectsstronglyaffectthegapsurvivalprobabilityhasbeenreit-eratedbyWhitmore10,whohaspresentedevaluationsfordiffractivejetandW-productionfordifferentpartonmodelparameterizationsoftheH1-ZEUSdiffractivestructurefunctionsbasedontheReggefactorizationassumptions.Inallthecasessuchestimatesovershoottheobservedcrosssections,whichtestifiestotheimportanceofabsorption.Whitmore’sresultsshowthatthegapsurvivalprobabilityvariessubstantiallyfromoneharddiffractivereactiontoanother,thetheoreticalunderstandingofthesevariationsis,asyet,lacking.7
SuperharddiffractionandBFKLdynamics
Theevolutionwithenergy(or1/x)ofthecrosssectionforscatteringoftwosmallobjectsofsimilarsize,i.e.Mueller’s“onia”,alsocalledthesingle-hard-scaleproblem,remainsoneofthemostintriguinganddifficultproblemsinperturbativeQCD.Fadin37andLipatovhavepresentedcorrections,next-to-leadinginenergy,totheirfamousBFKLequation;thesesubleadingcorrectionsareverylargeandreducethestrongriseinenergyofhardcrosssections,oftheleading-orderresult.Inviewofthis,itisvitallyimportantthattheexperimentscontinuetheireffortstomeasurehardsmall-xprocesses.
Cox38andForshawhavesuggestedlookingatdoubledissociationinphoto-production(DDP)athigh|t|,asanalternativetothetraditionalgaps-between-jetsmeasurement.Thelatterhasseveraldistinctdisadvantages:thedemand
2
forhighenoughptinthejets(typicallyp2t=25GeV)reducesstatisticsanddiminishestheavailablerapidityspace(thejetsthemselvesoccupyasmuchastwounitsinrapidityeachandmustbeseeninthemaindetectors);onealsoreliesstronglyonbeingabletomeasurethesizeofthegapaccurately(whichinpracticealsorequiresanexperimentaldefinition).IncontrastDDPathigh|t|whichmerelyusesthegaptoseparatethetwosystemsXandY(followingtheH1method),hasamuchwiderreachinrapidity(orenergy)andmayberelevantto|t|valuesaslowas1GeV2.MonteCarlostudies,usingHERWIG,
14
suggestthatthismeasurementisarobustmeasureofwhatevertheenergyriseoftheprocessis.Itwillcertainlybeinterestingtoseethefirstdata.Appendix-DiffractiveDIS:ConventionSummaryInclusiveDIS
Lorentz-invariantvariables
Q2≡−q2=−(k−k′)2
2
W2≡(p+q)2=Mp+2p.q−Q2≈2p.q−Q2x≡
Q2
2W2+Q2−Mp2
W2+Q2−Mp
≈
Q2
2k.p
=
S
≈
Q2
p.q
β≡
Q2
=
2MX+Q2−t
W2+Q2
xIP
=
Q2
2
MY
xIP
22MY=p′2=Mp
•AtHERAt≤1GeV2,andcanbeneglectedintheaboveexpressionsfor
β,xIP
2
•t≈−p⊥withthetransverseplaneperpendiculartothatdefinedbytheincoming(p,γ∗)inthecentre-of-massframe
′
•Theangular-averagedSDdiffractivecrosssectioncanbedecomposedasQyπ
2
d4σ(ep→ep′X)
y2
(1−y+
2dtdMX
+(1−y)·
d2σL(γ∗p→p′X)
4π2αem
·
xIPd2σT(γ∗p→hX)
dxIPdt
=
Q2
dxIPdt
D(4)
xIPFL(t,xIP,β,Q2)
•Parameterizingthet-dependencebythediffractiveslopeBD:
F2
D(4)
(t,xIP,x,Q2)≈F2
D(4)
(0,xIP,x,Q2)exp(BDt)
whereBDcandependonxIP,β,Q2.
•Thet-integrateddiffractivestructurefunctions
D(3)
(xIP,β,Q2)xIPFi
=
Q2
dxIPdt
(6)
•Exclusivesingly-dissociativediffractive(ESD)(orelastic)vector
mesonproductionisanexclusivelimitofSDinwhichYisaprotonandXisavectormeson,MX=Mρ,...,MY.
•Exclusivedoubly-dissociativediffractiveprocesses(EDD):Xisavectormeson,MX=Mρ,...,MYandtheprotonexcitesintonucleonresonnancesand/orcontinuumstatesY.
16
e(k)γ(q)(*)e(k’)XSGAPWptY(p’)References
1.R.Peschanksi,“Good-Walker”+QCDdipoles=HardDiffraction,theseproceedings.
2.H.KowalskiandL.Lindemann,Measurementoftheinclusivediffractive
D
crosssectionandF2atZEUS,theseproceedings.
3.T.Nicholls,DiffractivestructurefunctionfromH1,theseproceedings.4.M.Genovese,DiffractiveDISandQCD:past,present,future,thesepro-ceedings.5.W.Sch¨affer,WG2,SecondaryReggeonsindiffractivedeepinelasticscat-teringThemicroscopicQCDevaluation;WG4Tensorspinstructurefunctionofthedeuteron,theseproceedings.
6.C.Royon,UnifiedpictureofDISanddiffractiveDIS,theseproceedings.7.B.Kopeliovich,DiffractiveproductionofDrell-Yanpairsandheavyflavours,theseproceedings.
8.A.Pronyaev,TheforwardconeandL/TseparationindiffractiveDIS,theseproceedings.
9.M.Wusthoff,Ananalysisofdiffractionindeepinelasticscattering,theseproceedings.
10.J.Whitmore,ExtractingdiffractivepartondistributionsfromHERAdata
17
11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.
andfactorizationtests,theseproceedings.
A.Bruni,Exclusiveproductionofheavymesons,theseproceedings.
T.Monteiro,High-|t|vectormesonsatHERAanddeterminationofPomerontrajectories,theseproceedings.
P.Thompson,CharmoniumproductionatHERAusingtheH1detector,theseproceedings.
B.Clerbaux,DifferentialdistributionsforelectroproductionofρmesonsatHERA,theseproceedings.
M.Tytgat,VectormesonproductionatHermes,theseproceedings.
S.Kananov,DifferentialdistributionsforelectroproductionofρmesonsatHERA,theseproceedings.
L.Fredj,ThecrosssectionforhadronproductioninγγcollisionsatLEP,theseproceedings.
V.Zoller,TherunningBFKL:precociousasymptopiaforcharmandthedF2/dlogQ2-puzzle,theseproceedings.
I.Royen,ALow-Nussinovmodelforelasticvectormesonproduction,theseproceedings.
K.Golec-Biernatetal,Diffractivedijetphotoproductionandtheoff-diagonalgluondistribution,theseproceedings.
L.Frankfurtetal,DVCSatHERA,theseproceedings.
M.DiehlandT.Gousset,Non-diagonalpartondistributionfunctions,theseproceedings.
A.Buniatian,DiffractivedijetphotoproductioninH1,theseproceedings.B.Waugh,DiffractivefinalstatesinH1,theseproceedings.
R.Wichmann,EventshapesindiffractiveDISusingtheZeusLPS,theseproceedings.
T.Meng,Anopticalgeometricalapproachtoinelasticdiffractivescatter-ing,theseproceedings.
U.D’Alesio,Targetfragmentationofthenucleonathighenergies,theseproceedings.
N.N.Nikolaev,Absorptioncorrectionsandmeasurabilityofthesmall-xpionstructurefunctionatHERA,theseproceedings.
T.Nunnemann,Observationofdeepinelasticscatteringwithaleadingbaryon,theseproceedings.
A,Garfagnini,PropertiesofleadingbaryonswiththeZeusforwardde-tectors,theseproceedings.
N.Nikolaev,LeadingprotonsinDIS,theseproceedings.P.Rubinov,HarddiffractionatD0,theseproceedings;
K.Borras,ResultsonharddiffractionfromCDF,theseproceedings;A.Goussiou,Probinghardcolour-singletexchangeatD0,theseproceed-18
35.36.37.38.
ings;
K.Borras,ResultsondijetswithacentralrapiditygapfromCDF,theseproceedings.
C-I.Tan,Dino’sparadoxandflavouringofPomeron,theseproceedings.V.Fadin,WG5b,Next-to-leadingBFKL,theseproceedings.B.Cox,IsolatingthehardPomeron,theseproceedings.
19
因篇幅问题不能全部显示,请点此查看更多更全内容