ThematerialpresentedhereisanexpandedversionofaseriesoflecturesdeliveredbyF.MartinelliatthePraguesummerschool2006onMathematicalStatisticalMechanics.2
†
ThisworkwaspartiallysupportedbygdreCNRS-INdAM224,GREFIMEFI.
2
N.Cancrini,F.Martinelli,C.Roberto†,,andC.Toninelli†,
1Introductionandmotivations
Considerthefollowingsimpleinteractingparticlesystem.AteachsiteofthelatticeZthereisadynamicalvariableσx,calledinthesequel“spin”,takingvaluesin{0,1}.Withrateoneeachspinattemptstochangeitscurrentvaluebytossingacoinwhichlandsheadwithprobabilityp∈(0,1)andsettingthenewvalueto1ifheadand0iftail.Howeverthewholeoperationisperformedonlyifthecurrentvalueonitsrightneighboris0.SuchamodelisknownunderthenameoftheEastmodel[18]anditiseasilycheckedtobereversiblew.r.t.theproductBernoulli(p)measure.AcharacteristicfeatureoftheEastmodelisthat,whenq:=1−p≈0,therelaxationtothereversiblemeasureisextremelyslow[12]:
1
Trelax≈(1/q)
1+eβ
ecβasβ→∞,abehaviorthatisreferedtoasasuper-Arrheniuslawinthephysicsliterature.
TheEastmodelisoneofthesimplestexamplesofageneralclassofinter-actingparticlesmodelswhichareknowninphysicalliteratureasfacilitatedorkineticallyconstrainedspinmodels(KCSM).
ThecommonfeaturetoallKCSMisthateachdynamicalvariable,oneforeachvertexofaconnectedgraphGandwithvaluesinafinitesetS,waitsanexponentialtimeofmeanoneandthen,ifthesurroundingcurrentconfigurationsatisfiesasimplelocalconstraint,isrefreshedbysamplinganewvaluefromSaccordingtosomeapriorispecifiedmeasureν.Thesemodelshavebeenintroducedinthephysicalliterature[19,20]tomodeltheliquid/glasstransitionandmoregenerallytheslow“glassy”dynamicswhichoccursindifferentsystems(see[32,10]forrecentreview).Inparticular,theyweredevisedtomimicthefactthatthemotionofamoleculeinadenseliquidcanbeinhibitedbythepresenceoftoomanysurroundingmolecules.Thatexplainswhy,inallphysicalmodels,S={0,1}(emptyoroccupiedsite)andtheconstraintsspecifythemaximalnumberofparticles(occupiedsites)oncertainsitesaroundagivenoneinordertoallowcreation/destructiononthelatter.Asaconsequence,thedynamicsbecomesincreasinglyslowasthedensityofparticles,p,isincreased.Moreoverthereusuallyexistblockedconfigurations,namelyconfigurationswithallcreation/destructionratesidenticallyequaltozero.Thisimpliestheexistenceofseveralinvariantmeasures(see[26]forasomewhatdetaileddiscussionofthisissueinthecontextoftheNorth-Eastmodel),theoccurrenceofunusuallylongmixingtimescomparedtostandardhigh-temperaturestochasticIsingmodelsandmayinducethepresenceofergodicitybreakingtransitionswithoutanycounterpartatthelevelofthereversiblemeasure[17].
2
thenTrelax≈
Facilitatedspinmodels:recentandnewresults3
Becauseofthepresenceoftheconstraintsamathematicalanalysisofthesemodelshavebeenmissingforalongtime,withthenotableexceptionoftheEastmodel[3],untilafirstrecentbreakthrough[12,13].
Inthisworkwepartlyreviewtheresultsandthetechniquesof[12]butwealsoextendthemintwodirections.Firstlyweshowthatthemaintechniquecanbeadaptedtodealwithaweakinteractionamongthevariablesobtainedbyreplacingthereversibleproductmeasurewithageneralhigh-temperatureGibbsmeasure.Secondly,motivatedbysomeunpublishedconsiderationsofD.Aldous[2],weanalyzeaspecialmodel,thesocalledFA-1fmodel,onageneralconnectedgraphandrelateitsrelaxationtimetothatoftheEastmodel.
2Themodels
2.1Settingandnotation
Themodelsconsideredherearedefinedonalocallyfinite,boundeddegree,connectedgraphG=(V,E)withvertexsetVandedgesetE.Theassociatedgraphdistancewillbedenotedbyd(·,·)andthedegreeofavertexxbydx.Thesetofneighborsofx,i.e.y∈Vsuchthatd(y,x)=1,willbedenotedbyNx.ForeverysubsetV′⊂Vwedenoteby∂V′thesetofverticesinV\\V′withoneneighborinV′.InmostcasesthegraphGwilleitherbethed-dimensionallatticeZdorafiniteportionofitandinbothcasesweneedsomeadditionalnotationthatwefixnow.Foranyvertexx∈Zdwedefinethe∗,thworientedandthe∗-orientedneighborhoodofxas
d
∗Nx={y∈Zd:y=x+i=1αiei,αi=±1,0andiα2i=0}d
Kx={y∈Nx:y=x+i=1αiei,αi≥0}
d
∗∗Kx={y∈Nx:y=x+i=1αiei,αi=1,0}
whereeiarethebasisvactorsofZd.Accordingly,theorientedand*-oriented
∗
ΛofafinitesubsetΛ⊂Zdaredefinedas∂+Λ:=neighborhoods∂+Λ,∂+
∗∗
{∪x∈ΛKx}\\Λ,∂+Λ:={∪x∈ΛKx}\\Λ.ArectangleRwillbeasetofsitesoftheform
R:=[a1,b1]×···×[ad,bd]whilethecollectionoffinitesubsetsofZdwillbedenotedbyF.2.2Theprobabilityspace
Let(S,ν)beafiniteprobabilityspacewithν(s)>0foranys∈S.G⊂SwilldenoteadistinguishedeventinS,oftenreferredtoasthesetof“goodstates”,andq≡ν(G)itsprobability.
Given(S,ν)wewillconsidertheconfigurationspaceΩ≡ΩV=SVwhoseelementswillbedenotedbyGreekletters(ω,η...).IfG′=(V′,E′)is
4
N.Cancrini,F.Martinelli,C.Roberto†,,andC.Toninelli†,
asubgraphofGandω∈ΩVwewillwriteωV′foritsrestrictiontoV′.Wewillalsosaythatavertexxisgoodfortheconfigurationωifωx∈G.
OnΩequippedwewillconsidertheproductwiththenatural′σ-algebra′′
measureµ:=x∈Vνx,νx≡ν.IfG=(V,E)isasubgraphofGwewillwriteµV′orµG′fortherestrictionofµtoΩV′.Finally,foranyf∈L1(µ),wewillusetheshorthandnotationµ(f)todenoteitsexpectedvalueandVar(f)foritsvariance(whenitexists).2.3TheMarkovprocess
ThegeneralinteractingparticlemodelsthatwillbestudiedhereareGlaubertypeMarkovprocessesinΩ,reversiblew.r.t.themeasureµandcharacterizedbyafinitecollectionofinfluenceclasses{Cx}x∈V,whereCxisjustacollectionofsubsetsofV(oftenoftheneighborsofthevertexx)satisfyingthefollowinggeneralhypothesis:
Hp1Forallx∈VandallA∈CxthevertexxdoesnotbelongtoA.Hp2r:=supxsupA∈Cxd(x,A)<+∞.
InturntheinfluenceclassestogetherwiththegoodeventGarethekeyingredientstodefinetheconstraintsofeachmodel.
Definition1.Givenavertexx∈Vandaconfigurationω,wewillsaythattheconstraintatxissatisfiedbyωiftheindicator
1ifthereexistsasetA∈Cxsuchthatωy∈Gforally∈A
cx(ω)=
0otherwise
(1)
isequaltoone.
Remark1.Thetwogeneralhypothesesabovetellusthatinordertocheckwhethertheconstraintissatisfiedatagivenvertexwedonotneedtocheckthecurrentstateofthevertexitselfandweonlyneedtochecklocallyaroundthevertex.Thislastrequirementcanactuallybeweakenedandindeed,inordertoanalyzecertainspinexchangekineticallyconstrainedmodels[11],averyefficienttoolistoconsiderlongrangeconstraints!
Theprocessthatwillbestudiedinthesequelcanthenbeinformallydescribedasfollows.Eachvertexxwaitsanindependentmeanoneexponentialtimeandthen,providedthatthecurrentconfigurationωsatisfiestheconstraintatx,thevalueωxisrefreshedwithanewvalueinSsampledfromνandthewholeprocedurestartsagain.
ThegeneratorLoftheprocesscanbeconstructedinastandardway(seee.g.[27,26])anditisanon-positiveself-adjointoperatoronL2(Ω,µ)withdomainDom(L)andDirichletformgivenby
Facilitatedspinmodels:recentandnewresults5
D(f)=
x∈V
2
HereVarx(f)≡dν(ωx)f2(ω)−dν(ωx)f(ω)denotesthelocalvariancewithrespecttothevariableωxcomputedwhiletheothervariablesareheldfixed.TothegeneratorLwecanassociatetheMarkovsemigroupPt:=etLwithreversibleinvariantmeasureµ.
Noticethattheconstraintscx(ω)areincreasingfunctionsw.r.tthepartial
′
orderinΩforwhichω≤ω′iffωx∈Gwheneverωx∈G.HoweverthatdoesnotimplyingeneralthattheprocessgeneratedbyLisattractiveinthesenseofLiggett[27].
Duetothefactthatingeneralthejumpratesarenotboundedawayfromzero,irreducibilityoftheprocessisnotguaranteedandthereversiblemeasureµisusuallynottheonlyinvariantmeasure(typicallythereexistinitialconfigurationsthatareblockedforever).AninterestingquestionwhenGisinfiniteisthereforewhetherµisergodic/mixingfortheMarkovprocessandwhetherthereexistotherergodicstationarymeasures.Tothispurposeitisusefultorecallthefollowingwellknownresult(seee.g.Theorem4.13in[27]).
Theorem2.1Thefollowingareequivalent,(a)limt→∞Ptf=µ(f)inL2(µ)forallf∈L2(µ).(b)0isasimpleeigenvalueforL.
Clearly(a)impliesthatlimt→∞µ(fPtg)=µ(f)µ(g)foranyf,g∈L2(µ),i.e.µismixing.
Remark2.Evenifµismixingtherewillexistingeneralinfinitelymanysta-tionarymeasures,i.e.probabilitymeasuresµ˜satisfyingµ˜Pt=µ˜forallt≥0.Asanexample,assumecxnotidenticallyequaltooneandtakeanarbitraryVprobabilitymeasureµ˜suchthatµ˜{S\\G}=1.Aninterestingproblemisthereforetoclassifyallthestationaryergodicmeasuresµ˜of{Pt}t≥0,whereergodicitymeansthatPtf=f(˜µa.e.)forallt≥0impliesthatfisconstant(˜µa.e.).Aswewillseelater,whenG=Z2andforaspecificchoiceoftheconstraintknownastheNorth-Eastmodel,aratherdetailedanswerisnowavailable[26].
WhenGisfiniteconnectedsubgraphofaninfinitegraphG∞=(V∞,E∞),theergodicityissueoftheresultingcontinuoustimeMarkovchaincanbeattackedintwoways.
Thefirstoneistoanalyzethechainrestrictedtoasuitablydefinedergodiccomponent.Althoughsuchanapproachisfeasibleandnaturalinsomecases(seesection6foranexample),thewholeanalysisbecomesquitecumbersome.
Anotherpossibility,whichhasseveraltechnicaladvantagesoverthefirstone,istounblockcertainspecialverticesofGbyrelaxingtheirconstraintsandrestoreirreducibilityofthechain.Anaturalwaytodothatistoimaginetoextendtheconfigurationω,aprioridefinedonlyinV,totheverticesin
µ(cxVarx(f)),f∈Dom(L)
6
N.Cancrini,F.Martinelli,C.Roberto†,,andC.Toninelli†,
V∞\\Vandtokeepittherefrozenandequaltosomereferenceconfigurationτthatwillbereferredtoastheboundarycondition.IfenoughverticesinV∞\\Varegoodforτ,thenenoughverticesofGwillbecomeunblockedandthewholechainergodic.
Morepreciselywecandefinethefinitevolumeconstraintswithboundaryconditionτas
cτ(2)x,V(ω):=cx(ω·τ)wherecxaretheconstraintsforG∞definedin(1)andω·τ∈Ωdenotes
theconfigurationequaltoωinsideVandequaltoτinV∞\\V.Noticethat,foranyx∈V,theratecτx,V(ω)(2)dependsonτonlythroughtheindicators{1Iτz∈G}z∈B,whereBistheboundarysetB:=(V∞\\V)∩(∪z∈VCz).Therefore,insteadoffixingτ,itisenoughtochooseasubsetM⊂B,calledthegoodboundaryset,anddefine
τ
cM(3)x,V(ω):=cx,V(ω)whereτisanyconfigurationsatisfyingτz∈Gforallz∈Mandτz∈/Gfor
z∈B\\M.WewillsaythatachoiceofMisminimalifthecorrespondingchaininGwiththerates(3)isirreducibleanditisnon-irreducibleforanyotherchoiceM′⊂M.ThechoiceM=Bwillbecalledmaximal.ForconveniencewewillwriteLmax(LminΛΛ)forthecorrespondinggenerators.Remark3.Withoutanyotherspecificationfortheinfluenceclassesofthemodelitmayverywellbethecasethatthereexistsnoboundaryconditionsforwhichthechainisirreducibleand/ortheirexistencemaydependonthechoiceofthefinitesubgraphG.However,aswewillseelater,foralltheinterestingmodelsdiscussedintheliteraturealltheseissueswillhavearathersimplesolution.
Wewillnowdescribesomeofthebasicmodelsandsolvetheproblemofboundaryconditionsforeachoneofthem.2.40-1Kineticallyconstrainedspinmodels
Inmostmodelsconsideredinthephysicalliteraturethefiniteprobabilityspace(S,ν)isasimple{0,1}BernoullispaceandthegoodsetGisconventionallychosenastheempty(vacant)state{0}.Anymodelwiththesefeatureswillbecalledinthesequela“0-1KCSM”(kineticallyconstrainedspinmodel).AlthoughinmostcasestheunderlyinggraphGisaregularlatticelikeZd,wheneverispossiblewewilltrytoworkinfullgenerality.
Givena0-1KCSM,theparameterq=ν(0)canbevariedin[0,1]whilekeepingfixedthebasicstructureofthemodel(i.e.thenotionofthegoodsetandtheconstraintscx)anditisnaturaltodefineacriticalvalueqcas
qc=inf{q∈[0,1]:0isasimpleeigenvalueofL}
Facilitatedspinmodels:recentandnewresults7
Aswewillprovebelowqccoincideswiththebootstrappercolationthresholdqbpofthemodeldefinedasfollows[34]5.Foranyη∈ΩdefinethebootstrapmapT:Ω→Ωas
(Tη)x=0
ifeither
ηx=0
orcx(η)=1.
(4)
Denotebyµ(n)theprobabilitymeasureonΩobtainedbyiteratingn-timestheabovemappingstartingfromµ.Asn→∞µ(n)convergestoalimitingmeasureµ(∞)[34]anditisnaturaltodefinethecriticalvalueqbpas
qbp=inf{q∈[0,1]:µ∞=δ0}
whereδ0istheprobabilitymeasureassigningunitmasstotheconstantcon-figurationidenticallyequaltozero.Inotherwordsqbpistheinfimumofthevaluesqsuchthat,withprobabilityone,thegraphGcanbeentirelyemptied.Usingthefactthatthecx’sareincreasingfunctionofηitiseasytocheckthatµ(∞)=δ0foranyq>qbp.
Proposition2.2([12])qc=qbpandforanyq>qc0isasimpleeigenvalueforL.
Remark4.In[12]thepropositionhasbeenprovedinthespecialcaseG=Zdbutactuallythesameargumentsapplytoanyboundeddegreeconnectedgraph.
Havingdefinedthebootstrappercolationitisnaturaltodividethe0-1KCSMintotwodistinctclasses.
Definition2.Wewillsaythata0-1KCSMisnoncooperativeifthereexistsafinitesetB⊂VsuchthatanyconfigurationηwhichisemptyinallthesitesofBreachestheemptyconfiguration(all0’s)underiterationofthebootstrapmapping.Otherwisethemodelwillbecalledcooperative.
Remark5.Noticethatforanon-cooperativemodelthecriticalvalueqcisobviouslyzerosincewithµ-probabilityoneaconfigurationwillcontaintherequiredfinitesetBofzeros.
Wewillnowillustratesomeofthemoststudiedmodels.
[1]Frederickson-Andersen(FA-jf)facilitatedmodels[19,20].Inthefacilitatedmodelstheconstraintatxrequiresthatatleastj≤dxneighborsarevacant.Moreformally
Cx={A⊂Nx:|A|≥j}
Whenj=1themodelisnon-cooperativeforanyconnectedgraphGandergodicityoftheMarkovchainisclearlyguaranteedbythepresenceofat
8
N.Cancrini,F.Martinelli,C.Roberto†,,andC.Toninelli†,
leastoneunblockedvertex.Whenj>1ergodicityonageneralgraphismoredelicateandwerestrictourselvestofiniterectanglesRinZd.Inthatcaseandforthemostconstrainedcooperativecasej=damongtheirreducibleones,irreducibilityisguaranteedifweassumeaboundaryconfigurationidenticallyemptyon∂+R.Quiteremarkably,usingresultsfrombootstrappercolation[34]combinedwithproposition2.2,whenG=Zdand2≤j≤dtheergodicitythresholdqcalwaysvanishes.
[2]Spiralmodel[9,8]ThismodelisdefinedonZ2withthefollowingchoicefortheinfluenceclasses
Cx={NEx∪SEx;SEx∪SWx;SWx∪NWx;NWx∪NEx}
whereNEx=(x+e2,x+e1+e2),SEx=(x+e1,x+e1−e2),SWx=(x−e2,x−e2−e1)andNWx=(x−e1;x−e1+e2).InotherwordsthevertexxcanflipiffeitheritsNorth-East(NEx)oritsSouth-West(SWx)neighbours(orbothofthem)areemptyandeitheritsNorth-West(NWx)oritsSouth-East(SEx)neighbours(orbothofthem)areemptytoo.Themodelisclearlycooperativeandin[8]ithasbeenproventhatitscriticalpointqc
o
coincideswith1−poc,wherepcisthecriticaltresholdfororientedpercolation.Theinterestofthismodelliesonthefactthatitsbootstrappercolationisexpectedtodisplayapeculiarmixeddiscontinuous/criticalcharacterwhichmakesitrelevantasamodelfortheliquidglassandmoregeneraljammingtransitions[9,8].
[3]Orientedmodels.Orientedmodelsaresimilartothefacilitatedmodelsbuttheneighborsofagivenvertexxthatmustbevacantinorderforxtobecomefreetoflip,arechosenaccordingtosomeorientationofthegraph.Insteadoftryingtodescribeaverygeneralsettingwepresentthreeimportantexamples.
Example1.ThefirstandbestknownexampleisthesocalledEastmodel[18].HereG=Zandforeveryx∈ZtheinfluenceclassCxconsistsofthevertexx+1.Inotherwordsanyvertexcanflipiffitsrightneighborisempty.Theminimalboundaryconditionsinafiniteintervalwhichensureirreducibilityofthechainareofcourseemptyrightboundary,i.e.therightmostvertexisalwaysunconstrained.Themodelisclearlycooperativebutqc=0sinceinordertoemptyZitisenoughtostartfromaconfigurationforwhichanysitexhassomeemptyvertextoitsright.OnecouldeasilygeneralizethemodeltothecasewhenGisarootedtree(seesection6).Inthatcaseanyvertexdifferentfromtherootcanbeupdatediffitsancestorisempty.Therootitselfisunconstrained.
Example2.ThesecondexampleistheNorth-EastmodelinZ2[25].HereonechoosesCxastheNorthandEastneighborofx.Themodelisclearlycoop-o
erativeanditscriticalpointqccoincideswith1−poc,wherepcisthecritical
Facilitatedspinmodels:recentandnewresults9
thresholdfororientedpercolationinZ2[34].ForsuchamodelmuchmorecanbesaidaboutthestationaryergodicmeasuresoftheMarkovsemigroupPt.Theorem2.3([26])Ifq Backtothegeneralmodelwenowdefinetwomainquantitiesthatareofmathematicalandphysicalinterest. ThefirstoneisthespectralgapofthegeneratorL,definedas gap(L):= f=const inf D(f) 10 N.Cancrini,F.Martinelli,C.Roberto†,,andC.Toninelli†, 1.WhatisthebehaviorofF(t)forlargetimescales? 2.Fora0-1KCSMisitthecasethatF(t)decaysexponentiallyfastast→∞ ′ foranyq>qc? 3.Iftheanswertothepreviousquestionispositive,isthedecayraterelatedtothespectralgapinasimplewayorthedecayrateofF(t)requiresadeeperknowledgeofthespectraldensityofL? 4.Isitpossibletoexhibitexamplesof0-1KCSMinwhichthepersistencefunctionshowsacrossoverbetweenastretchedandapureexponentialdecay?Unfortunatelytheabovequestionsarestillmostlyunansweredexceptforthefirsttwo. 3.1Someusefulobservationstoboundthespectralgap Itisimportanttoobservethefollowingkindofmonotonicitythatcanbeexploitedinordertoboundthespectralgapofonemodelwiththespectralgapofanotherone. ′ Definition3.SupposethatwearegiventwoinfluenceclassesC0andC0,de-′notebycx(ω)andc′x(ω)thecorrespondingratesandbyLandLtheassociatedgeneratorsonL2(µ).If,forallω∈Ωandallx∈V,c′x(ω)≤cx(ω),wesaythatLisdominatedbyL′. Remark7.Thetermdominationherehasthesamemeaningithasinthecontextofbootstrappercolation.ItmeansthattheKCSMassociatedtoL′ismoreconstrainedthantheoneassociatedtoL. Clearly,ifLisdominatedbyL′,D′(f)≤D(f)andthereforegap(L′)≤gap(L). Example4.AssumethatthegraphGhasnverticesandcontainsaHamiltonpathΓ={x1,x2,...,xn},i.e.d(xi+1,xi)=1forall1≤i≤n−1andxi=xjforalli=j.ConsidertheFA-1fmodelonGwithonespecialvertex,e.g.xn,unconstrained(cxn≡1).Then,ifwereplaceGbyΓequippedwithitsnaturalgraphstructureandwedenotebyLandL′therespectivegenerators,wegetthatgap(L)≥gap(L′).ClearlyL′describestheFA-1fmodelonthefiniteinterval[1,...,n]⊂Zwiththelastvertexfreetoflip.ThisinturnisdominatedbyLEast,thegeneratoroftheEastmodelon[1,...,n],whichisknowntohaveapositive[3,12]spectralgapuniformlyinn.Thereforethelatterresultholdsalsoforgap(L′)andgap(L). Example5.AlongthelinesofthepreviousexamplewecouldlowerboundthespectralgapoftheFA-2fmodelinZd,d≥2,withthatinZ2,byrestrictingthesetsA∈C0toe.g.the(e1,e2)-plane. Facilitatedspinmodels:recentandnewresults11 Foralastandmoredetailedexampleofthecomparisontechniquewereferthereadertosection6. Althoughthecomparisontechniquecanbequiteeffectiveinprovingposi-tivityofthespectralgap,oneshouldkeepinmindthat,ingeneral,itprovidesquitepoorbounds,particularlyinthelimitingcaseq↓qc. Thesecondobservationwemakeconsistsinrelatinggap(L)whentheun-derlyinggraphisinfinitetoitsfinitegraphanalogue.Fixr∈VandletGn,r⊂Gbetheconnectedballcenteredatrofradiusn.Supposethatinfngap(LmaxGn,r)>0.Itistheneasytoconcludethatgap(L)>0. Indeed,followingLiggettCh.4[27],foranyf∈Dom(L)withVar(f)>0pickfn∈L2(Ω,µ)dependingonlyonfinitelymanyspinssothatfn→fandLfn→LfinL2.ThenVar(fn)→Var(f)andD(fn)→D(f).Butsincefndependsonfinitelymanyspins Var(fn)=VarGm,r(fn)andD(fn)=DGm,r(fn) providedthatmisalargeenoughsquare(dependingonfn).Therefore D(f) 12 N.Cancrini,F.Martinelli,C.Roberto†,,andC.Toninelli†, Withtheabovenotationthefirstmainresultof[12]canbeformulatedasfollows. Theorem4.1Thereexistsauniversalconstantǫ0∈(0,1)suchthat,ifthereexistsℓandaǫ0-goodsetGℓonscaleℓ,theninfΛ∈Fgap(LmaxΛ)>0.Inpar-ticulargap(L)>0. {y:y=x+di=1αiei,αi≥0}.IfthisisnotthecaseoneshouldinsteaduseanonrectangulargeometryforthetilesofthepartitionofZd,adaptedtothechoiceoftheinfluenceclasses.ForexamplefortheSpiralModelthebasictileatlenghtscaleℓisaquadrangularregionR0withonesideparalleltoe1andtwosidesparalleltoe1+e2,R0:=∪ℓ1S0+(i−1)(e1+e2)with 2 S0:={x∈Z:0≤x1≤ℓ−1,x2=0}.Inthiscasecondition(b)shouldalso ∗∗Λ0:=e1,e1−e2,−e2.bemodifiedbysubstitutingeverywhere∂+Λ0with∂+ Inseveralexamples,e.g.theFA-jfmodels,thenaturalcandidatefortheevent GℓistheeventthatthetileΛ0is“internallyspanned”,anotionborrowedfrombootstrappercolation[1,34,14,24,15]: Definition5.WesaythatafinitesetΓ⊂Zdisinternallyspannedbyaconfigurationη∈Ωif,startingfromtheconfigurationηΓequaltooneoutsideΓandequaltoηinsideΓ,thereexistsasequenceoflegalmovesinsideΓwhichconnectsηΓtotheconfigurationidenticallyequaltozeroinsideΓandidenticallyequaltooneoutsideΓ. OfcoursewhetherornotthesetΛ0isinternallyspannedforηdependsonlyontherestrictionofηtoΛ0.Oneofthemajorresultsinbootstrappercolationproblemshasbeentheexactevaluationoftheµ-probabilitythattheboxΛ0isinternallyspannedasafunctionofthelengthscaleℓandtheparameterq[24,34,14,15,1].Fornon-cooperativemodelsitisobviousthatforanyq>0suchprobabilitytendsveryrapidly(exponentiallyfast)tooneasℓ→∞,sincetheexistenceofatleastonecompletelyemptyfinitesetB+x⊂Λ0(seedefinition2),allowstoemptyallΛ0.Forsomecooperativesystemslikee.g.theFA-2finZ2,ithasbeenshownthatforanyq>0suchprobabilitytendsveryrapidly(exponentiallyfast)tooneasℓ→∞andthatitabruptlyjumpsfrombeingverysmalltobeingclosetooneasℓcrossesacriticalscaleℓc(q).Inmostcasesthecriticallengthℓc(q)divergesveryrapidlyasq↓0.Therefore,forsuchmodelsandℓ>ℓc(q),onecouldsafelytakeGℓasthecollectionofconfigurationsηsuchthatΛ0isinternallyspannedforη.Wenowformalizewhatwejustsaid. Corollary4.2Assumethatlimℓ→∞µ(Λ0isinternallyspanned)=1andthattheMarkovchaininΛ0withzeroboundaryconditionson∪x∈K∗Λℓxis0ergodic.Thengap(L)>0. Westressthatforsomemodelsanotionofgoodeventwhichdiffersfromrequiringinternalspanningisneeded.ThisisthecasefortheN-EandSpiralmodels,ascanbeimmediatelyseenbynoticingthatatanylengthscaleit Facilitatedspinmodels:recentandnewresults13 ispossibletoconstructsmallclustersofparticlesinpropercornersofthetilesthatcanneverbeerasedbyinternalmoves.Thechoiceoftheproperǫ-goodsetofconfugurationsforN-Ehasalreadybeendiscussedin[12].FortheSpiralModelthedefinitionwhichnaturallyarisesfromtheresultsin[9] 0betheregionobtainedfromR0bysubtractingtwoisthefollowing.LetR properquadrangularregionsatthebottomleftandtoprightcorners,namely0:=R0\\(Rbl∪Rtr)whereRbl(Rtr)havethesameshapeofR0shrinkedR atlengthscaleℓ/4andhavethebottomleft(topright)cornerwhichcoincideswiththeoneofR0.Theǫ-goodsetofconfigurationsonscaleℓ,Gℓ,includesallconfigurationsηsuchthatthereexistsasequenceoflegalmovesinsideR0whichconnectsηR0(theconfigurationwhichhasallonesoutsideR0and 0.Lemmaequalsηinside)toaconfigurationidenticallyequaltozeroinsideR 4.7andProposition4.9of[9]prove,respectively,property(a)and(b)of ∗ Definition4(with∂+Λ0substitutedwithe1,e1−e2,−e2,seeremark8)whenthedensityisbelowthecriticaldensityoforientedpercolation.Thus,usingthisdefinitionforthegoodeventandTheorem4.1weconcludethatTheorem4.3gap(Lspiral)>0atanyρ Theorem4.4Assumethatgap(L)>0.ThenF(t)≤e−qgapt+e−pgapt.Remark9.Theabovetheoremsdisprovesomeconjectureswhichappearedinthephysicsliterature[21,23,5,6],basedonnumericalsimulationsandapproximateanalyticaltreatments,ontheexistenceofasecondcriticalpoint′qc>qcatwhichthespectralgapvanishesand/orbelowwhichF(t)woulddecayinastretchedexponentialform≃exp(−t/τ)βwithβ<1. Theorem4.4alsoindicatesthatonecanobtainupperboundsonthespec-tralgapbyprovinglowerboundsonthepersistencefunction.Concretelyalowerboundonthepersistencefunctioncanbeobtainedbyrestrictingtheµ-averagetothoseinitialconfigurationsηforwhichtheoriginisblockedwithhighprobabilityforalltimess≤t.UnfortunatelyinmostmodelssuchastrategyleadstolowerboundonF(t)whichareusuallyquitefarfromtheaboveupperboundanditisaninterestingopenproblemtofindanexactasymptoticast→∞ofF(t). FinallyweobservethatfortheNorth-EastmodelonZ2atthecriticalvalueq=√qcthespectralgapvanishesandthepersistencefunctionsatisfies∞ dtF(0 14 N.Cancrini,F.Martinelli,C.Roberto†,,andC.Toninelli†, d spaceS={0,1}ℓ,goodeventG:=Gℓ,singlesitemeasuretherestrictionofµtoSandrenormalizedconstraints{crenx}x∈Zd(ℓ)whichareastrengtheningoftheNorth-Eastonesnamely crenx(η)=1 ∗ iffηy∈Gforally∈Kx. Suchamodelisreferredtoin[12]asthe*-generalmodel.Byassumption theprobabilityofGcanbemadearbitrarilyclosetoonebytakingℓlargeenoughandtherefore,bythesocalledBisection-ConstrainedapproachwhichisdetailedinthenextsectionforthecasewhenµisahightemperatureGibbsmeasure,thespectralgapofthe*-generalmodelispositive.Nextoneobservesthatassumption(b)ofthetheoremisthereexactlytoallowonetoreconstructanylegalmoveofthe*-generalmodel,i.e.afullupdateofanentireblockofspins,bymeansofafinite(dependingonlyonℓ)sequenceoflegalmovesfortheoriginal0-1KCMS.Itisthenaneasystep,usingstandardpathtechniquesforcomparingtwodifferentMarkovchains(seee.g.[33]),togofromthePoincar´einequalityforthe*-generalmodeltothePoincar´einequalityfortheoriginalmodel. Theproofof(aslightlylesspreciseversionof)Theorem4.4givenin[12]isbasedontheFeynman-Kacformulaandstandardlargedeviationconsider-ations.Howeveritispossibletoprovideasimplerandmorepreciseargumentasfollows.OnefirstobservethatF(t)=F1(t)+F0(t)where η (s)=1foralls≤t)F1(t)=dµ(η)P(σ0andsimilarlyforF0(t).ConsidernowF1(t),thecaseofF0(t)beingsimilar, anddefineTA(η)asthehittingtimeofthesetA:={η:η0=0}startingfromtheconfigurationη.Then(seee.g.Theorem2in[4]) F1(t)=PµTA>t≤e−tλA NoticethatforanyfasaboveVar(f)≥µ(A)=q.ThereforeλA≥qgapandtheproofiscomplete. 4.2Asymptoticsofthespectralgapneartheergodicitythreshold.Animportantquestion,particularlyinconnectionwithnumericalsimulationsornon-rigorousapproaches,isthebehaviorneartheergodicitythresholdqcofthespectralgapforeachspecificmodel.Hereisasetofresultsprovenin[12]. wherePµdenotestheprobabilityovertheprocessstartedfromtheequilibriumdistributionµandλAisgivenbythevariationalformulafortheDiricheltproblem 2 λA:=infD(f):µ(f)=1,f≡0onA(7) Facilitatedspinmodels:recentandnewresults15 EastModel. q→0 limlog(1/gap)/(log(1/q))2=(2log2) −1 (8) FA-1f.Foranyd≥1,thereexistsaconstantC=C(d)suchthatforanyq∈(0,1),thespectralgaponZdsatisfies: C−1q3≤gap(L)≤Cq3 C−1q2/log(1/q)≤gap(L)≤Cq2 ford=1,ford=2, C−1q2≤gap(L)≤Cq1+ 2 q (λ1−1 exp(−c/q5)≤gap(L)≤exp− −ǫ) d≥3 16 N.Cancrini,F.Martinelli,C.Roberto†,,andC.Toninelli†, ˜(t)isthefinitevolumepersistencefunction.IntegratingovertwhereF andusingthemonoticityofthegap(see[12,Lemma2.11])giveE(T)≤e2c(qgap(LΛq)))−1≤e2c(qgap(L))−1.This,inviewofTheorem4.1,isin-compatiblewiththeassumedscalingqlog2(q). MoreoveronecanobtainalowerboundonE(T)asfollows.LetλbesuchthatP(T≥λ)=e−1thenclearlyP(T≥t)≤e−⌊t/λ⌋andE(T)≥e−1λ.Wecanalwayscoupleinthenaturalwaytwocopiesoftheprocess,onestartedfromallonesandtheotherfromanyotherconfigurationη,andconcludethat P(thetwocopieshavenotcoupledattimet)≤P(T≥t)≤e1−λt.Standardargumentsgiveimmediatelythatgap−1≤λi.e.E(T)≥e−1gap−1.Inconclusion −1−1 ≤E(T)≤e2cqgap(LΛq)e−1gap(LΛq) 5Extensiontointeractingmodels Inthissectionweshowhowtoextendtheresultsonthepositivityofthe spectralgapfor0-1KCSMonaregularlatticeZdtothecaseinwhichaweakinteractionispresentamongthespins.Webeginbydefiningwhatwemeanbyaninteraction. Definition6.AfiniterangeinteractionΦisacollectionΦ:={ΦΛ}Λ∈Fwhere WewillsaythatΦ∈BM,rifr(Φ)≤randΦ≤M. i)ΦΛ:ΩΛ→RforeveryΛ∈F; ii)ΦΛ=0ifdiam(Λ)≥rforsomefiniter=r(Φ)calledtherangeoftheinteraction; iii)Φ≡supx∈ZdΛ∋xΦΛ∞<∞; GivenaninteractionΦ∈Br,MandΛ∈F,wedefinetheenergyinΛofaspinconfigurationσ∈Ωby ΦA(σ)HΛ(σ)= A∩Λ=∅ τ (σ):=HΛ(σ·τ)whereσ·τdenotesForσ∈ΩΛandτ∈ΩΛcwealsoletHΛ theconfigurationequaltoσinsideΛandtoτoutsideit.Finally,foranyΛ∈Fandτ∈ΩΛc,wedefinethefinitevolumeGibbsmeasureonΩΛwithboundaryconditionsτandapriorisinglespinmeasureνbytheformula µΦ,τΛ(σ):= 1 Facilitatedspinmodels:recentandnewresults17 ThekeypropertyofGibbsmeasuresisthat,foranyV⊂ΛandanyξinΛ\\V,theconditionalGibbsmeasureinΛwithboundaryconditionsτgivenξcoincideswiththeGibbsmeasureinVwithboundaryconditionτΛc·ξ.Moreformally Φ,τΛc·ξ µΦ,τ(·)Λ(·|σVc=ξ)=µVClearlyaveragesw.r.t.µΦ,τΛ(·|σVc=ξ)arefunctionofξand,whenevercon-fusiondoesnotarise,wewillsystematicallydropξfromournotation. Asitiswellknown(seee.g.[35]),foranyr<∞thereexistsM0>0suchthatforany0 Φ limµΦ,τΛ=µ wherethelimitistobeunderstoodasaweaklimit.Moreoverthelimitis reached“exponentiallyfast”inthestrongestpossiblesense.Namely,foranyd⊂Λ∈Fandanytwoboundaryconditionsτ,τ′, µΦ,τ′(σ)dmaxΛ σd 18 N.Cancrini,F.Martinelli,C.Roberto†,,andC.Toninelli†, concretecaseoftheNorth-Eastmodelintroducedinsection2.4.Moreover,inordernottoobscurethediscussionwithrenormalizationorblockconstruc-tions,wewillmaketheunnecessaryassumptionthatthebasicparameterqofthereferencemeasureνisveryclosetoone. Theorem5.1Let{cx}x∈Z2bethoseoftheNorth-Eastmodel.Thereexistsq0∈(0,1)andforanyr<∞thereexistsM1suchthat,foranyM inf gap(LΦ)>0 Remark12.Aswewillseeintheproofofthetheorem,therestrictiononstrengthoftheinteractioncomesfromtwodifferentrequirements.ThefirstoneisthatthefinitevolumeGibbsmeasurehastheverystrongmixingprop-ertyuniformlyintheboundaryconditionsgivenin(10).That,aswepointedoutpreviously,isguaranteedaslongasM infgap(LΦ)>0 Φ∈Br,M Proof(ofTheorem5.1).Wewillfollowthepatternoftheproofforthenoninteractingcasegivenin[12]andwewillestablishthestrongerresult supγ(Λ)<+∞, whereγ(Λ):= Φ∈Br,M Λ∈F inf infgap(LΦ,τΛ)τ∈MaxΛ −1 (11) providedthatq>q0islargeandMistakensufficientlysmall.AboveMaxΛ denotesthesetofconfigurationsinΩΛcwhichareidenticallyequaltozeroon∗∂+Λ.Inwhatfollowsinordertosimplifythenotationwewillnotwritethedependenceontheboundaryconditionofthetransitionrates. Asin[12]thefirststepconsistsinprovingacertainmonotonicitypropertyofγ(Λ). Lemma5.3ForanyV⊂Λ∈F, 0<γ(V)≤γ(Λ)<∞ Proof(ProofoftheLemma).FixΦ∈Br,Mand,foranyξ∈MaxV,definethenewinteractionΦξasfollows: Facilitatedspinmodels:recentandnewresults19 ΦξA(σA) = Noticethat,byconstruction, r(Φ)≤r(Φ) ξ 0 A′:A′∩V=A ΦA′(σA·ξA′\\A) ifA∩Vc=∅ifA⊂V andsup x A∋x ΦξA∞≤Φ∞ sothatΦξ∈Br,M.NextobservethattheGibbsmeasureonΛwithinteraction Φξissimplytheproductmeasure Φ,ξ µΦΛ(σΛ):=µV(σV)⊗νΛ\\V(σΛ\\V)onΩΛ=ΩV⊗ΩΛ\\V Φ,τ Thus,foranyf∈L2(ΩV,µΦ,ξ≡V)andτ∈MaxΛ,wecanwrite(VarΛVarµΦ,τ) Λ ξ Φ VarΦ,ξV(f)=VarΛ ξ ,τ Φ (f)≤γ(Λ)DΛ ξ ,τ Φ,ξ (f)≤γ(Λ)DV(f) where,inthelastinequality,weusedthefactthat,foranyx∈Vandany ω∈ΩΛ,cx,Λ(ω)≤cx,V(ω)becauseξ∈MaxV,togetherwith VarΦΛ ⊓⊔ ThankstoLemma5.3weneedtoprove(11)onlywhenΛrunsthroughall possiblerectangles.Forthispurposeourmainingredientwillbethebisectiontechniqueof[28]which,initsessence,consistsinprovingasuitablerecursionrelationbetweenspectralgaponscale2LwiththatonscaleL,combinedwiththenovelideaofconsideringanacceleratedblockdynamicswhichisitselfconstrained.Suchanapproachisreferredtoin[12]astheBisection-ConstrainedorB-Capproach. Inordertopresentitwefirstneedtorecallsomesimplefactsfromtwodimensionalpercolation. Apathisacollection{x0,x1,...,xn}ofdistinctpointsinZ2suchthatd(xi,xi+1)=1foralli.A∗-pathisacollection{x0,x1,...,xn}ofdistinct ∗ foralli.GivenarectangleΛandadirectionpointsinZ2suchthatxi+1∈Nxi ei,wewillsaythatapath{x0,...,xn}traversesΛintheith-directionif{x0,...,xn}⊂Λandx0,xnlayonthetwooppositesidesofΛorthogonaltoei. Definition7.GivenarectangleΛandaconfigurationω∈ΩΛ,apath{x0,...,xn}iscalledatop-bottomcrossing(left-rightcrossing)ifittra-versesΛinthevertical(horizontal)directionandωxi=0foralli=0,...,n.Therightmost(lower-most)suchcrossings(see[22]page317)willbedenotedbyΠω ξ ,τ (f|{σy}y=x)=VarΦ,ξV(f|{σy}y=x). 20 N.Cancrini,F.Martinelli,C.Roberto†,,andC.Toninelli†, Remark13.GivenarectangleΛandapathΓtraversingΛine.g.theverticaldirection,letΛΓconsistsofallthesitesinΛwhichareinΓortotherightofit.Then,asremarkedin[22],theevent{ω:Πω=Γ}dependsonlyonthevariablesωxwithx∈ΛΓ. Wearenowreadytostarttheactualproofofthetheorem.Atthebeginningthemethodrequiresasimplegeometricresult(see[7])whichwenowdescribe. Letlk:=(3/2)k/2,andletFkbethesetofallrectanglesΛ⊂Z2which,modulotranslationsandpermutationsofthecoordinates,arecontainedin[0,lk+1]×[0,lk+2].ThemainpropertyofFkisthateachrectangleinFk\\Fk−1canbeobtainedasa“slightlyoverlappingunion”oftworectanglesinFk−1.Lemma5.4Forallk∈Z+,forallΛ∈Fk\\Fk−1thereexistsafinitesequence 1/3(i)(i)k1 lk−2,{Λ1,Λ2}si=1inFk−1,wheresk:=⌊lk⌋,suchthat,lettingδk:=(i)Λ=Λ1∪Λ2, (i)(i) (ii)d(Λ\\Λ1,Λ\\Λ2)≥δk, (j)(j)(i)(i) =∅,ifi=j.(iii)Λ1∩Λ2∩Λ1∩Λ2 (i) (i) TheB-Capproachthenestablishesasimplerecursiveinequalitybetweenthe quantityγk:=supΛ∈Fkγ(Λ)onscalekandthesamequantityonscalek−1asfollows. FixΛ∈Fk\\Fk−1andwriteitasΛ=Λ1∪Λ2withΛ1,Λ2∈Fk−1satisfyingthepropertiesdescribedinLemma5.4above.WithoutlossofgeneralitywecanassumethatallthehorizontalfacesofΛ1andofΛ2layonthehorizontalfacesofΛexceptforthefaceorthogonaltothefirstdirectione1andthat,alongthatdirection,Λ1comesbeforeΛ2.Setd≡Λ1∩Λ2andwrite,fordefiniteness,d=[a1,b1]×[a2,b2].Lemma5.4impliesthatthewidthofdinthefirstdirection,b1−a1,isatleastδk.Setalso I≡[a1+(b1−a1)/2,b1]×[a2,b2] andlet∂rI={b1}×[a2,b2]betherightfaceofIalongthefirstdirection.Definition8.Givenaconfigurationω∈ΩwewillsaythatωisI-goodiffthereexistsatop-bottomcrossingofI. Givenτ∈MaxΛ,werunthefollowingconstrained“blockdynamics”onΩΛ(inwhatfollows,forsimplicity,wesuppresstheindexi)withboundaryconditionsτandblocksB1:=Λ1\\I,B2:=Λ2.TheblockB2waitsameanoneexponentialrandomtimeandthenthecurrentconfigurationinsideitisrefreshedwithanewonesampledfromtheGibbsmeasureoftheblockgiventhepreviousconfigurationoutsideit(andτoutsideΛ).TheblockB1doesthesamebutnowtheconfigurationisrefreshedonlyifthecurrentconfigurationωinBisI-good(seeFigure5.1). Thegeneratoroftheblockdynamicsappliedtofcanbewrittenas Facilitatedspinmodels:recentandnewresults21 22 N.Cancrini,F.Martinelli,C.Roberto†,,andC.Toninelli†, Proof.Itfollowsimmediatelyfromstandardpercolationargumentstogetherwith 2M supsupµΦ,τ{x}(σx=1)≤(1−q)e Φ∈Br,M τ WecannowstatethemainconsequenceofLemma5.5,5.6. Proposition5.7Thereexistsq0∈(0,1)andforanyr<∞thereexistsM1 suchthat,foranyM Φ∈Br,Mτ∈MaxΛ ⊓⊔ λksinceotherwisethereisnothingtobeproved. ByapplyingµB1tobothsidesof(15)andusing(13)weobtain ⇒µB1(f)∞≤(1+λ)µB1f=µB1µB2(f) 1+λ+c1 λk,weget µB2(f)∞≤µB2(f)∞µB2(1+λ+c1 ≤µB2(f)∞µB2( whichispossibleonlyif µB2( i.e. λ≤−1+8 1 λk1 µB2(f)+ c1 ∞µB1(f)∞ 1 λk (17) Facilitatedspinmodels:recentandnewresults23 Thesecondterminther.h.s.of(18),usingthedefinitionofγkandthefactthatB2=Λ2∈Fk−1isboundedfromaboveby Φ,τΦ,τΦ µΛVarB2(f)≤γk−1µΛcx,B2VarΦ(f)(19)x x∈B2 BywritingdownthestandardPoincar´einequalityfortheblockauxiliary chain,wegetthatforanyf (k)Φ,τΦ,τΦΦ VarΛ(f)≤γblockµΛc1VarB1(f)+VarB2(f)(18) NextweexaminethemorecomplicatetermµΦ,τc1VarΦB1(f).ForanyΛ ωsuchthatthereexistsarightmostcrossingΠωinIdenotebyΛωthesetofallsitesinΛwhicharetotheleftofΠω.SinceVarΦB1(f)dependsonlyon I{Πω=Γ}doesnotdependonωΛ\\B1and,foranytop-bottomcrossingΓofI,1 thevariablesω’stotheleftofΓ,wecanwrite Φ,τΦ,τΦΦΦ (20)I{∃ΠωinI}µΛωVarB1(f)µΛc1VarB1(f)=µΛ1Theconvexityofthevarianceimpliesthat Φ(f)≤VarΦVarµΦΛω(f)B1Λω Noticethat,byconstruction,forallx∈B2andallω,cx,B2(ω)=cx,Λ(ω). Φ Var(f)isnothingbutthecontributioncThereforethetermx∈B2µΦ,τx,B2xΛ Φ,τ carriedbythesetB2tothefullDirichletformDΛ(f). whereitisunderstoodthatther.h.s.dependsonthevariablesinΠωandtotherightofit.Thekeyobservationatthisstage,whichexplainstheroleandtheneedoftheevent{∃ΠωinI},isthefollowing.ForanyωsuchthatΠωexiststhevarianceVarΦΛω(f)iscomputedwithboundaryconditions(τoutsideΛandωΛ\\Λω)whichbelongtoMaxΛω.ThereforewecanbounditfromaboveusingthePoincar´einequalityby ΦΦ VarΦΛω(f)≤γ(Λω)DΛω(f)≤γ(B1∪I)DΛω(f) whereweusedLemma5.3togetherwiththeobservationthatΛω⊂B1∪I= Λ1.Inconclusion Φ,τΦΦ I{∃ΠωinI}µΛωVarB1(f)µΛ1 Φ,τΦ ≤γ(Λ1)µΛ1I{∃ΠωinI}DΛω(f) Φ,τΦ ≤γ(Λ1)µΛ1I{∃ΠωinI}cx,ΛωVarx(f) ≤ γ(Λ1)µΦ,τΛ x∈Λω cx,ΛVarΦx(f) x∈Λ1 24 N.Cancrini,F.Martinelli,C.Roberto†,,andC.Toninelli†, because,byconstruction,foreveryωsuchthatthereexistsΠωinI cx,Λω(ω)=cx,Λ(ω)∀x∈Λω. (21) Ifwefinallyplug(5.1)intother.h.s.of(20)andrecallthatΛ1∈Fk−1,weobtain Φ,τΦ,τΦ µΛc1VarB1(f)≤γk−1µΛcx,ΛVarΦ(f)(22)x x∈Λ1 Inconclusionwehaveshownthat Φ,τ(k)Φ,τΦ,τ µΛcx,ΛVarx(f)VarΛ(f)≤γblockγk−1DΛ(f)+ x∈d 1/3 (23) Averagingoverthesk=⌊lk⌋possiblechoicesofthesetsΛ1,Λ2gives VarΛ(f)≤γblockγk−1(1+ (k) 1 sk (k) )γblockγk−1 ≤γk0 j=k0 k (1+ 1 sj) isbounded.⊓⊔ 6Onespinfacilitatedmodelonageneralgraph Inthissectionweproveoursecondsetofnewresultsbyexaminingtheonespin facilitatedmodel(FA-1finshort)onageneralconnectedgraphG=(V,E).OurmotivationcomesfromsomeunpublishedspeculationbyD.Aldous[2]that,inthisgeneralsetting,theFA-1fmayserveasanalgorithmforinforma-tionstorageindynamicgraphs. Webeginbydiscussingthefinitesetting.LetrbeoneoftheverticesandTbearootedspanningtreeofGwithrootr.OnΩ={0,1}VconsidertheFA-1fconstraints: cx,G(ω)=1ifωy=0forsomeneighboryofx (26) 0otherwiseˆbethecorrespondingMarkovandletcˆx,G=cx,Gifx=randcˆr,G≡1.LetL generatorandnoticethatassociatedMarkovchainisergodicsincethevertex ˆasthe(G,r,risunconstrained.ForshortnesswewillreferinthesequeltoL FA-1f)model.Ourfirstresultreadsasfollows. Facilitatedspinmodels:recentandnewresults25 Theorem6.1 gap(G,r,FA-1f)≥gap(Z,East) Proof.Bymonotonicitycˆx,G(ω)≥cˆx,T(ω)andthereforegap(G,r,FA-1f)≥gap(T,r,FA-1f).Wecanpushthemonotonicityargumentabitfurtherandconsiderthefollowing(T,r,East)model: 1ifeitherx=rorωy=0,whereyistheancestor(inT)ofx c˜x,T(ω)= 0otherwise (27) Clearlycˆx,T(ω)≥c˜x,T(ω)andthereforegap(G,r,FA-1f)≥gap(T,r,East).Wewillnowproceedtoshowthat gap(T,r,East)≥gap(Z,East) (28) IfalltheverticesofThavedegree2withtheexceptionoftherootandtheleaves,i.e.ifT⊂Z,then(28)followsfrom[12,Lemma2.11].Thusletusassumethatthereexistsx∈Twithdx≥3andletusordertheverticesofTbyfirstassigningsomearbitraryordertoallverticesbelongingtoanygivenlayer(≡samedistancefromtheroot)andthendeclaringx N.Cancrini,F.Martinelli,C.Roberto†,,andC.Toninelli†, ByrecursivelyapplyingtheaboveresulttoAandBseparately,weimme-diatelyreduceourselvestothecaseofatreeT′⊂Zandtheproofofthetheoremiscomplete. ⊓⊔Proof(ofLemma6.2).InL2(Ω,µ)considerthesetHBoffunctionsfthatdonotdependonωx,x∈Ta.Becauseofthechoiceoftheconstraintsc˜x,T(ω),HBisaninvariantsubspaceforthegeneratorofthe(T,r,East)modeland f∈HBµ(f)=0 inf ˜(f)D 2 gap(Z,East)µ(Ω+) Facilitatedspinmodels:recentandnewresults27 Proof.AsintheproofofTheorem6.1wecansafelyassumethatGisatreeT ˜onΩbysettingwithrootr∈V.Weextendanyf:Ω+→Rtoafunctionf ˜(ηy=1∀y)≡f(ηy=1∀y=r,ηr=0).UsingTheorem6.1,wethenwritef ˜)≤µ(Ω+)−2Var(f˜)Var+(f)=Var+(f +−2−1˜≤µ(Ω)gap(T,r,East)µcˆx,TVarx(f) x wheretheconstraints{cˆx,T}x∈Thaverightafter(26).beendefined ˜)withx=r.RememberLetusexamineagenerictermµcˆx,TVarx(f thatcˆx,T=cx,Tandmoreovercx,T(η)=0ifηy=1forally=x.Fur-thermore,foranyηsuchthatthereexistsy=xwithηy=0,µ+(ηx=1|{ηy}y=x)=p.Inconclusionwehaveshownthat ˜(f)∀x=r(31)µcˆx,TVarx(f)=µ(Ω+)µ+cx,TVar+x ˜˜Wenowexaminethedangeroustermµcˆr,TVarr(f)=µVarr(f).Be-˜wecansafelyrewriteitascauseofthedefinitionoff ˜µVarr(f)=µχ{∃y=r:ηy=0}Varr(f) LetusordertheverticesofthetreeTstartingfromthefurthermostones byfirstassigningsomearbitraryordertoallverticesbelongingtoanygivenlayer(≡samedistancefromtheroot)andthendeclaringx 2328 N.Cancrini,F.Martinelli,C.Roberto†,,andC.Toninelli†, InordertoboundfromaboveVarTξ(f)weapplythePoincar´einequalityinTξwithconstraints{cˆz,Tξ}androotvtogetherwithTheorem6.1: VarTξ(f)≤gap(Z,East)−1 z∈Tξ µχ{∃y=r:ηy=0}Varr(f)=µ(χξ=rµ(Varr(f)|ξ))≤µχξ=rVarTξ(f) ˆz,TξVarz(f)µTξc Noticethat,byconstruction,cˆz,Tξ(η)=cz,T(η)foranyz∈Tξ,includingthe rootvofTξwherecˆv,Tξ(η)=1bydefinitionandcv,T(η)=1becauseηξ=0.Puttingalltogetherweconcludethat µχ{∃y=r:ηy=0}Varr(f)≤gap(Z,East)−1µχ{∃y=r:ηy=0}cx,TVarx(f) ≤gap(Z,East)−1µ(Ω+) x∈T x∈T µ+cx,TVar+(f)x wherewehaveusedoncemoretheobservationbefore(31)towrite cx,TVarx(f)=cx,TVar+x(f). Ifwenowcombine(6),(31)and(6)togetherweget −1+ Var+(f)≤2gap(Z,East)µ(Ω+)(f)µcx,TVar+x x∈T andtheproofiscomplete.⊓⊔ Acknowledgement.F.MartinelliwouldliketowarmlythankRomanKoteck´yfor theveryniceinvitationtolectureatthePragueSummerSchoolonMathemati-calStatisticalMechanics.WealsoacknowledgeP.Sollichforusefuldiscussionsandcommentsonthetopicsofthispaper. References 1.M.AizenmanandJ.L.Lebowitz,Metastabilityeffectsinbootstrappercolation,J.Phys.A21(1988),no.19,3801–3813.MRMR968311(90e:82047) 2.D.Aldous,slidesavailableathttp://www.math.ucsd.edu/williams/diaconis/aldous-ising.pdf. 3.D.AldousandP.Diaconis,Theasymmetricone-dimensionalconstrainedIsingmodel:rigorousresults,J.Statist.Phys.107(2002),no.5-6,945–975.MRMR1901508(2003e:82046) 4.AmineAsselahandPaoloDaiPra,Quasi-stationarymeasuresforconservativedynamicsintheinfinitelattice,Ann.Probab.29(2001),no.4,1733–1754.MRMR1880240(2002j:60177) Facilitatedspinmodels:recentandnewresults29 5.L.BerthierandJ.P.Garrahan,Non-topographicdescriptionofinherentstruc-turedynamicsinglassformers,J.Chem.Phys.119(2003),4367–4371. 6.L.Berthier,J.P.Garrahan,andS.Whitelam,Dynamiccriticalityinglassform-ingliquids,Phys.Rev.Lett.(2004),no.92,185705–185709. 7.L.Bertini,N.Cancrini,andF.Cesi,ThespectralgapforaGlauber-typedy-namicsinacontinuousgas,Ann.Inst.H.Poincar´eProbab.Statist.38(2002),no.1,91–108.MRMR1899231(2003d:82073) 8.G.Biroli,D.S.Fisher,andC.Toninelli,Ontheuniversalityofjammingperco-lation:replytothecommentofjengandschwarz,Phys.Rev.Lett.2007inpress(preprintcond-mat/0612485). 9.G.BiroliandC.Toninelli,Anewclassofcellularautomatawithadiscontinuousglasstransition,preprint.10. ,Kineticallyconstrainedspinmodels,ProbabilityTheoryandRelated Fieldsinpress.13. 21.22. 23.24. 25.26. ,Facilitatedkineticisingmodelsandtheglasstransition,J.Chem.Phys. 83(1985),5822–5831. I.S.Graham,M.Grant,andL.Pich´e,Modelfordynamicsofstructuralglasses,Phys.Rev.E55(1997),2132–2144. G.Grimmett,Percolation,seconded.,GrundlehrenderMathematischenWis-senschaften[FundamentalPrinciplesofMathematicalSciences],vol.321,Springer-Verlag,Berlin,1999.MRMR1707339(2001a:60114) P.Harrowell,Visualizingthecollectivemotionresponsibleforαandβrelax-ationsinamodelglass,Phys.Rev.E48(1993),4359–4363. A.E.Holroyd,Sharpmetastabilitythresholdfortwo-dimensionalbootstrappercolation,Probab.TheoryRelatedFields125(2003),no.2,195–224.MRMR1961342(2003k:60257) J.Jackle,F.Mauch,andJ.Reiter,Blockingtransitionsinlatticespinmodelswithdirectedkineticconstraints,PhysicaA184(1992),no.3-4,458–476. G.KordzakhiaandS.Lalley,Ergodicityandmixingpropertiesofthenortheastmodels,preprint,2006. 30 N.Cancrini,F.Martinelli,C.Roberto†,,andC.Toninelli†, 27.T.M.Liggett,Interactingparticlesystems,Springer-Verlag,NewYork,1985. MR86e:60089 28.F.Martinelli,LecturesonGlauberdynamicsfordiscretespinmodels,Lectures onprobabilitytheoryandstatistics(Saint-Flour,1997),Springer,Berlin,1999,pp.93–191.MR2002a:60163 29.F.MartinelliandE.Olivieri,ApproachtoequilibriumofGlauberdynamicsin theonephaseregion.I.Theattractivecase,Comm.Math.Phys.161(1994),no.3,447–486.MRMR1269387(96c:82040)30. 因篇幅问题不能全部显示,请点此查看更多更全内容