合平方根或两个数的积为0的意义来思考解题. 三、自主应用 巩固新知 【例1】若x=2是方程ax24x50的一个根,你能求出a的值方程的根的另一 个作用——代入 吗? 【分析】根据根的定义可以知道,若一个数是方程的根,那么把方程使等号成这个数代入方程后,等号必定成立,于是可以构造出关于a的一元一立. 次方程,进而解即可. 【例2】若x=1是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值。 【分析】如果一个数是方程的根,那么把该数代入方程一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解。 四、自主总结 拓展新知 1、一元二次方程根的概念; 2、要会判断一个数是否是一元二次方程的根; 3、要会用一些方法求一元二次方程的根. 五、课堂作业 P4 3 7题 (《绩优学案》对应练习) 【补充练习】 1、方程x(x-1)=2的两根为【 】. A.x1=0,x2=1 B.x1=0,x2= -1 C.x1=1,x2=2 D.x1=-1,x2=2 2、方程x2-81=0的两个根分别是x1=________,x2=__________. 3、已知方程5x2+mx-6=0的一个根是x=3,则m的值为________. 4、若一元二次方程ax2+bx+c=0(a≠0)有一个根为1,则a+b+c= ;若有一个根是-1, 2
则b与a、c之间的关系为 ;若有一个根为0,则c= 。 5、如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值. 教学反思 3
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- haog.cn 版权所有 赣ICP备2024042798号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务