一、选择题(单选题,每小题3分,共18分)
1、圆柱状玻璃杯在光滑的水平桌面上以恒定的角速度绕玻璃杯的对称轴旋转,杯底覆盖了一层厚度均匀的冰和玻璃杯一起转动。温度升高冰融化后,在没有水从玻璃杯溢出的情况下, (A)系统的角动量和角速度都减少; (B)系统的角动量不变但角速度减少; (C)系统的角动量不变但角速度增加; (D)系统的机械能和角速度都增加; (E)系统的机械能不变但角速度减少。
选:___B____
2、一物体以初速度v0、仰角由水平地面抛出,则地面上方该抛体运动轨道的最大曲率 半径与最小曲率半径为:
222(A)maxv0/gcos,minv0cos/g; 2(B)maxv0/gcos,minv0cos/g; 222(C)maxv0cos/g,minv0/gcos;
2(D)maxv0cos/g,minv0/gcos。
选:___ A____
3、下面的几种说法中,哪一种是正确的? (1)静摩擦力作功: (A)一定为零;(B)可以作正功;(C)一定作负功。
选:____B______
(2)滑动摩擦力作功:(A)一定为零;(B)可以作正功;(C)一定作负功。
选:____B______
我承诺,我将严
格遵守考试纪律。
题号 得分 批阅人(流水阅 一 二 三 1 三 2 三 3 三 4 4、有两根轻弹簧S1和S2,S1的劲度系数是S2的劲度系数的1/3。两根轻弹簧相串接,如图所示。弹簧下挂一物体后,物体保持静止。则在上述过程中,拉长弹簧S1与拉长弹簧S2所作功之比为: (A)
11; (B); (C)1; (D)3; (E)9。 93选:____ D _____
5、若外力对系统不作功,则
(A)系统的动量守恒; (B)系统机械能守恒; (C)系统对质心的角动量守恒; (D)以上结论都不正确。
选:____D_____
6、有一如图所示的弹簧振子,其振幅为A,周期为T。振子由平衡位置O运动到离O点A/2距离处所需的最小时间为: (A)
TTTT; (B); (C); (D)。
161268选:___C ____
二、填空题(共36分)
1、(本小题6分)如图所示,一质量为m的小球系在轻绳的一端,
放在倾角为的光滑斜面上,绳的另一端固定在斜面上的O点,绳长为l。 (1)设开始小球处在最低点A处,在垂直于绳的方向给小球以初速0。欲使小球刚好能绕过最高点B处,则0
的大小至少为:
(2)如用同样长度的质量不计的轻杆代替细绳,其他条件都不变,则0的大小至少为:
5glsin 。
2、(本小题4分)一质量为5kg的物体,所受的作用力随时间的变化关系如图所示。设物体从静止开始运动,则20s末时物体的速度大小为:
5m/s 。
3、(本小题6分)如图所示,光滑的地面上停放有一辆长板车,在长板车中间背靠背站着质量分别为
10 4glsin 。
Fx(N) O -5 10 20 t(s) m1和m2的两个人,他们同时从静止开始相对于地
面以1和2的速度反向而行,则在下列三种情况下,长板车的运动方向为
m1m212 m1m212 m1m212
向右;向左;保持静止
4、(本小题4分)一刚体绕一固定轴转动,并规定刚体逆时针方向的角位移取正值,有人根据角速度及角加速度的正负号分析出刚体的转动情况如下表所示,试检查他的分析是否正确。 刚体转动方向 转速变化 判断 (1) (2) (3) (4) + - - + - + - + 逆时针方向 顺时针方向 顺时针方向 逆时针方向 减慢 加快 减慢 加快
(1)正确;(2)错误;(3)错误;(4)正确.
5、(本小题4分)若系统在一个惯性参考系中满足机械能守恒,那么在另一个惯性参考系中机械能是否一定守恒?填上你的结论:____否_________(是或否);你的依据是:
______系统非保守内力作功和参照系无关,但外力和参照系有关_________________。
6、(本小题4分)一粒子沿x轴运动,其势能Ep(x)为x的函数,如图所示。若该粒子所具有的总能量E0,则
该粒子的运动范围为______________;当粒子处在x2位
置时,其动能为______________;该粒子处在
______________位置时,受力最大;该粒子处在
______________位置时,受力最小。
7、(本小题8分)由地球表面发射一质量为m的物体,发射速度为
v0 v0,方向与地平线成角,如图所示。设地球质量为M,半径为R,
为求解该物体能达到离地心最远的距离rmax,
RrmaxOv
(1)需用到的物理定律为: ,
相应的方程为: ;
(2)需用到的物理定律为: ,
相应的方程为: 。
三、计算题:(共46分)
1、(本小题12分)N个质点组成的质点系mi(i1,2,,N)如图所示。设第i个质点
mi的动量为pi,其受到的外力为Fi,第j个质点mj对第i个质点mi的作用力为fij。试由
牛顿第二定律导出该质点系的动量定理。
• ••pi
Fi•i • pj fij•fji •• j • •
•
2、(本小题12分)如图所示,一斜面质量为M,倾角为,高为h,放在光滑水平面上。物体m从斜面顶部自静止开始无摩擦地滑到斜面底部,求这一过程中施于斜面的力所作的功及斜面后退的距离。
设m刚接触地面时的速度为v,它是沿虚线所示的轨迹方向,设此时M的速度为u,它是水平方向的. 由机械能守恒:
121mvMu2mgh (1) (2分) 22由动量守恒:mvcosMu (2) (2分) 式中角如右图,图中s是M后退的距离,而s是m在水平方向移动的距离.
1Mu2 (3) (1分) 2hh由右图可得:tan (4)(2分) tan(5)
sss对M用动能定理得:A另由系统动量守恒得:msMs (6) (1分)
mhMm2ghcos2由上述方程:得A;scot.(2分+2分) 2Mm(Mm)(Mmsin)或者由水平方向质心不动,求斜面后退的距离;再按吴锡珑教材P71 例题,求正压力后再
求功。 3、(本小题12分)有一质量为M、长为l的均匀细棒,其一端固定一质量也为M的小球,另一端可绕垂直于细棒的水平轴O
自由转动,组成一球摆。现有一质量为m的子弹,以水平速度射向小球,子弹穿过小球后速率减为
,方向不变,如图所示。2试求:
(1)要使球摆能在铅直平面内完成一个完全的圆周运动,子弹
射入速度的大小为多大?
(2)如当球摆摆到水平位置时瞬时角速度为1,求在该位置时,球摆的角加速度及支点O对棒的作用力。
124 MlMl2Ml2 (1) (1分)
33v由O轴角动量守恒:mvlmlJ0 (2) (2分)
23mv由(1)、(2)得:0 (3) (1分)
8Ml1l122由机械能守恒:J0Mg2lMg2J (4) (2分)
222要能完成一个完全的圆周运动,必须满足:0 (5)
4M由(3)、(4)、(5)得得子弹入射的最小速度为:v2gl. (1分)
ml2、由转动定律:MgMglJ (6)
29g由(1)和(6)得:; (2分)
8l3球摆的质心位置为:xCl.
4解:1、J质心作圆周运动,则在水平位置时有:aCx1xC;由质心运动定律得:Fx2MaCx或者作用力大小:F
2aCyxC.
5Mg。 (3分) 163M12l;2914l2FyFx2Fy2M225215gg 与x轴夹角tan1(2) 81l 4、(本小题10分)如图所示,劲度系数为k、质量为M的弹簧振子静止地放置在光滑的水平面上,一质量为m的子弹以水平速度0射入,并与之一起运动。以m、M开始共同运动的时刻为t0,求该体系的固有角频率、振幅和初相位。 解:
固有角频率:k
k, (3分)
Mm由动量守恒子弹射入后共同初始速度为:v1mv0.
Mm由机械能守恒:AMmv1km2v0 ., (4分)
k(Mm)由:xAcos(t),t0,x00,且沿x反方向运动, 所以得:初相位/2
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- haog.cn 版权所有 赣ICP备2024042798号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务