您好,欢迎来到好走旅游网。
搜索
您的当前位置:首页九年级数学二次凼数2

九年级数学二次凼数2

来源:好走旅游网



初三数学复习教案
课题:二次函数(2)
重点与难点:二次函数性质的综合运用
例题讲解:
1.已知直线y=-2xb(b≠0)x轴交于点A,与y轴交于点B;一抛物线的解析式为yx2(b10)xc.

若该抛物线过点B,且它的顶点P在直线y=-2xb上,试确定这条抛物线的解析式;⑵过点B作直线BC⊥ABx轴于点C,若抛物线的对称轴恰好过C点,试确定直线y=-2xb的解析式.

2.已知两点0(OO)B(02),⊙A过点B且与x轴分别相交于点OC,⊙Ay轴分成两段圆弧,其弧长之比为31.直线l与⊙A切于点O,抛物线的顶点在直线L上运动.

(1)求⊙A的半径;
(2)若抛物线经过OC两点,求抛物线的解析式;

3.如图,△OAB 是边长为2+

3

的等边三角形,其中O 是坐标原点,顶点B y 轴的正方

向上,将△OAB折叠,使点A落在边OB上,记为A’,折痕为EF

(1)A’E∥x轴时,求点A’E的坐标;

(2)A’E∥x 轴,且抛物线y=-

1

x2+bx+c 经过点A’E 时,求该抛物线与x 轴的交点


6


的坐标;
(3)当点A’OB上运动但不与点OB重合时,能否使△A’EF成为直角三角形?若能,请求出此时点A’的坐标;若不能,请你说明理由.



4.如图,已知点A(01)C(43)E(

15

23

)P 是以AC 为对角线的矩形ABCD


4


8


(不在各边上)的—个动点,点Dy轴,抛物线yax2+bx+1P为顶点.

(1)说明点ACE在一条条直线上;
(2)能否判断抛物线yax2+bx+1的开口方向?请说明理由;
(3)设抛物线yax2+bx+1x轴有交点FG(FG的左侧),△GAO与△FAO的面积差为3,且这条抛物线与线段AE有两个不同的交点.这时能确定ab的值吗?若能,请求出ab的值;若不能,请确定ab的取值范围.

5.如图,函数

y

1

x

2

的图象交

y

轴于M,交

x

轴于N,点P 是直线MN 上任意一




2









点,PQ

x

轴,Q 是垂足,设点Q 的坐标为(,0t ,△POQ 的面积为S(当点P M

N重合时,其面积记为0).

1)试求S与之间的函数关系式;t
2)在如图所示的直角坐标系内画出这个函数的图象,并利用图象求使得Saa0)的点P的个数.

y S

M
P

O Q N x O t

6.已知:在平面直角坐标系xOy中,过点P(02)任作一条与抛物线yax2(a0)交于两

点的直线,设交点分别为AB.若∠AOB90°

判断AB两点纵坐标的乘积是否为一个确定的值,并说明理由;⑵确定抛物线yax2(a0)的解析式;

当△AOB的面积为4时,求直线AB的解析式.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- haog.cn 版权所有 赣ICP备2024042798号-2

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务