搜索
您的当前位置:首页正文

流体力学泵与风机课后题答案详解中国建筑工业出版社

来源:好走旅游网


流体力学泵与风机课后题答案详解中国建筑工业出版社

流体力学泵与风机部分习题答案 2-15

解:(1)当为空气 pzhp

1BAp1p2

pppzh 9.810000.3 2940pa2.94kpa

AB(2)当为油 pphHz

1A1p1p3

pBp31hH

ppApBp1p3hHz1hH

hz1h9.810000.19.810000.290000.12040pa2.04kpa2-16 解:p1p2

p1pM水Hh1h2p2pa油h1汞h2pM水Hh1h2pa油h1汞h29809.810001.50.2h17850h113.69.810000.298098001.598000.29800h17850h1266561950h126656980147001960

h15.63m

2

2-28 解:phh

12 hhbhhh2b1Ph1h212122sin450sin45013229.810003219.810003212sin450sin450

9.8100052234650N34.65kN

1hh1h2l1h20blD1h1h2h2blD2D2sin45sin450P

9.810002229.810002223229.8100052.45m222-32 解:Phh2sin0b12hh21452sin450b

9.810001222129.81000222222

9.8100082110857.6N110.8576kN

h22h2hhh121hh1322l1Dsin450bsin4502h2sin450bsin450P

9.8100042229.81000427239.8100082

1362

l137p62262

GlGPlPTlT

19.6219.8100082762T2

T9.81274.43101.31kN

2-41

3

解:hrsin452 Phh1b 20x 1

9.8100022 2439200N39.2kN PzV

r24536012rsin450rcos450b 9.81000113.142282224

22344N22.344kN P39.2222.344245.1kN

arctanPzParctan22.344.2arctan0.57300

x39

4

3-3

解:(1) (2)3-5

Q24d3v340.0252100.0049m3/s Q4.9kg/s

22vd31vd3dv30.625m/s

21dv32.5m/s

25

解:Q10000m3/h2.778m3/s

vQ20m/s4d2

所以,d4Qv0.177

所以,d0.45m450mm 此时,vQ4Qd211.1120.6358517.4m/s

4d23-6

2解:A1A2A23A4A54d520d

A111A1220d240d2 A1122A2220d240d AA1213320d40d22 AA1144220d240d2 A1d215A5d222040 2124d140d d1110d r11210dd2334240d2 d210d r23210d254d340d2 d5 5310dr3210dd27d240 7 744d410dr4210d9d240

3

34d25d510dr5210d 6

GQd2402u1u2u3u4u5d220u1u2u3u4u5

3-7

解:干管前端的质量流量为:

Q11v1A12.6225d124

40.050.128544kg/s2

Q2Q32.6225

Q10.064272kg/s2

Q20.064272v222.247m/s2A22.30.0424v3Q30.06427218.05m/s23A32.240.04543-10

解:将基准面建立在B点经过的水平面上,列能量方程:

z1p11v122gz2p222v22g

v12m/s其中,

121

z11.2m

p11.5m

d12v22v14.5m/sd2

22p24.521.21.502g2g

3-11

p2224.521.21.51.8712g2g7

解:将2点所在的水平面作为基准面,列能量方程:

z13z1p11v122gz2p222v22g

z20p1

p1p2

v13m/s

232p2v2302g2g

v22gh328.2m/s2

2v2d18.2v1d23 所以,d0.12m

3-14

解:以水面为基准面,列0-0和D-D的能量方程:

z0p020v02gzDpD2DvD2g0

zD4z00

p00

20v02g

pD0

4000402DvD2g 所以,

2DvD2g,即,

vD429.88.85m/s2

Ddv所以,Q422AvADvD40.0528.850.017368m3/s

2g:2g44dD:dA1:81

列0-0和A-A断面的能量方程:

8

zp020v0p2AAvA02gzA2g

0007pA481

所以,pA7481 所以,pA68.1kpa

列0-0和B-B断面的能量方程:

zp0v2002BvB02gzBpB2g

pB4819.80.484kpa

列0-0和C-C断面的能量方程:

z00v02CvC0p22gzCpC2g p4C2819.820.1kpa

pD0

3-18

解:将基准面建在管道所在的水平面上,方程:

zp211v1222v212gz2p2ghl12

0499.8000.989.822v22g1

v222g3.9

v28.74m/s

3-19

9

列能量

解:(1)(a)将基准面建在A所在的水平面上,列0-0和C-C断面的能量方程:

zp20C2CvC00v02gzCp2g

40000v2CC2g

2CvC2g4

vC89.88.85m/s

v22BB:CvC2gs222gC:sB4:1

2BvB2g1

v129.84.43m/s (b) (c)zv200pA2AvA0p02gzA2g

4000pA1

pA3

pA29.4kpa

10

vAvB

(2)(a)z20v02CvC0p02gzCpC2ghl12

其中,hv22l1241v22g32g 22240000v22g3v2v22g2g

v2242g5 所以,v23.96m/s

v112v21.96m/s

(b) (c)p0v200p11v21v2z102gz12g22g

4000p135

p1345

p133.32kpa zp020v0p222v2v23v22202gz22g42g22g

11

4000p245434525

p211.76kpa

3-20 解:pv21v2212az2z1p22pl12

v2Q0.0224123.140.05220.38m/s 4dvQ0.024223.140.05210.19m/s

4dpv22l311224v22

v21v22p2z2vv2121a2z1p223242

v24v212

300v222p223v2124v22v1121.20.630309.8 300v22212v222224v224v221.20.630309.8300130.6210.1920.6609.8

352.16pa

hp1352.167.944.6mm

3-22

解:G176.2kN/h0.048944kN/s

QG0.0489441039.80.77.1347m3/s

12

v2Q42d4Q47.13479.09m/sd23.14

p1v122aHp2v222pl12

其中,v10,p1h101031039.898pa20.79.092Hv29801.20.79.8H00.0352d2g0.79.0929.0929801.20.79.8H00.035H0.79.8229.8984.9H28.91.0122H

所以,H32.64m

1vM21p1aHpMpl122222v1210.79.0920.03532.649.0929801.20.79.832.64pM0.79.8222129.89879.968pM28.916.52

所以,p

M63.45pa

13

3-26

14

3-28

解:列连续性方程:

v1Q0.4423.140.423.18m/s 4Dv0.442Q

d23.140.1250.96m/s4列能量方程:

2zp11v1p222v212gz22g

p1v221v2122g2g

50.9623.18229.8131.98m

p1131.989.81293.404kpa

列动量方程: FQv2v1

p214Dp24d2RQv2v1 1293.40440.42R0.450.963.18 R1293.40440.420.447.78143.339kNR1211.94kN

3-33

15

解:列能量方程:

zp11v21222v212gz2p2g 其中,v1v325

v219225v2 1.5021v12g0.9022v22g

0.6v29v2222g252g

v24.3m/s v12.58m/s

FQv2v1

12h2121b2h2bRQv2v1

其中,Q2.581.21.54.644m3/s

129.81031.52129.81030.92R10004.6441.72R480.2N

16

4-2 (1)

QQd100mm0.1mv

Q10kg/s

0.01m3/s

4Q40.011.274m/s22d3.140.1

1.519106m2/s

Revd1.2740.18387161.51910 (紊流)

(2)

QQQ10kg/s

1.14104100.011765m3/s850v4Q40.0117651.4987m/s22d3.140.1vd1.49870.1Re13151.14104m2/s

4-3 解:d0.3m T20C 15.71006m2/s

Re200015.7106vmax104.67103m/sd0.33

3.140.32QmaxvmaxA104.67107.3947103m3/s4Q7.39471031.2360031.9kg/h

17

4-4 解:

d22d1

2v1d224v2d1

1214v2d2vd22ReRe1112Re 所以,Re52

4-12 紊流粗糙区,Re610

Revd,所以,

Re61051.308106v3.14m/sd0.25

3.140.252Qv3.140.154m3/s44d2

4-13

v1Q1200L/s0.2m3/s

vd4Q14.076433m/s2d

Re14.0764330.2560.7791101.308106Q220L/s

v20.4076433m/s

Re27.791104Q35L/s

v30.1019m/s

Re31.9478104查尼氏图,得到,

Re3RelRe2ReuRe11Reu6105

Rel4104,

23所以,Q属于紊流粗糙区,Q属于紊流过渡区,Q属于紊流光滑区,

(1) 对于Q,采用希弗林松公式,

1

10.11Kd0.250.5100.110.2530.250.02326

lv121004.0764332hf110.023267.888md2g0.2529.82(2) 对于Q,采用阿公式,

18

K6820.11dRehf20.250.5103680.1140.257.7911020.250.02547

2lv21000.407643320.02547d2g0.2529.80.086m

(3) 对于Q,采用布公式 0.31640.31640.02678 Re19477.5330.250.25

0.40764332lv310040.005676mhf330.02678d2g0.2529.85u2

4-15 Re210 Re4000

d0.05m K0.2510m

l3

QminvminReu21051.007106vmax4.028m/sd0.05

Qmaxvmaxd23.140.0524.0287.905L/s44

vminRel40001.0071068.056102d0.05d248.0561023.140.0520.01581102m3/s0.1581L/s4

4-21 (1)

d1ad2

v112v2a

lv1264lv1264lv12hf11d12gRe1d12gv1d1d12ghf1hf22v1d21v2d12a4

a1.19

19

0.31640.25lv121.751.25(2)hf1v0.250.251d1d12gvhf20.31640.25lv21vd2d14.75

a1.16

222av0.25d0.2522d22gK0.25(3)hf1lv20.111d1d2gv2d1.2511hf2K0.25212vda5.25

a1.14

0.112lv21d2d22g4-24 解:Q0.32932600.002742m/s v4Qd240.0027423.140.0521.3972m/s

l2dv2g0.629

1.39722629.80.629

0.3151

4-26 解:(1) 突然缩小

A210.5A0.578.5113140.375 1hv222j112g0.37529.80.0765m76.5mm

(2)20.5

v222hj222g0.529.80.102m102mm (3)

A22131A78.591314

216922hj31629.80.115m115mm

(4)41

20

22hj410.204m204mm29.8

4-27

解:hjhvv221mvmv1j2g2g hv1vmjhjvm22g12vmv22g0

所以,vv1v2m2

2此时,

vvv2v1v2v2111h1v21v2jhj22g22g22g2hj

4-29 解:Q16m3/h4.44103m3/s

4Q44.44103v1d20.0522.2624m/s 13.14

4Q44.44103v2d20.120.5656m/s

23.14h1p2v2v2125.91732.262420.5656jp2g10009.829.80.140674m

v2 2h1j12g 10.5387 hv2j22g 28.6195-17 解:

8l180.0210Sd1.2p110.22d420.24608.5

13.148l250Sd2p280.021.220.2d43.142.243042.7

208l380.0250Sd1.2p332d420.1497367

33.140.1SpSp1Sp2Sp3608.53042.797367101018.3

21

p1SpQ12101018.30.1522272.91N/m22p2SpQ2101018.30.1622586.1N/m2

S1065-25 解:解得,

SQ122022SQ2Q3SQ215SQQ22SQ210233Q14.472103m3/s

Q22.41103m3/s

Q30.63103m3/s

5-27 解:

l1200880.02d0.21034.94S124124d1g3.140.29.8l2100880.025d0.120698.8S224224d2g3.140.19.8l3720880.02d0.23725.78S324324d3g3.140.29.8

所以,S691.25

1111110.038035S1S1S232.1705143.871)SSQ132H

QH1660.186103m3/sS3S14417H2)SQ2

1SQH22

8SS3S13S3132512d34g4

132513.1420.29.8256.185-28 解:S

ABlAB20080.028dAB0.324136.28624dABg3.140.39.822

lAC80.02160SACd.38AC02d4.1420.349.8109.029

ACg3lAD80.02200SADd.48AD02d420.449.832.34

ADg3.14lBC80.021208SBCSCDdBC0.32d424881.772

BCg3.140.39.pA2.8105 pASABQ2AB QA2.8105ABpS.28610009.80.457868m3/sAB136pS2

pAAADQADQADS2.810532.3410009.80.93993m3/s

ADp22ASAC2QBCSBCQBC

QBCQCDpA4SS0.23488m3/s

ACBCQ2QABQBC0.69275m2/s

Q3QADQCD1.17481m2/sQ31Q2Q31.86756m/s

pS2CBCQBC44.2kN/m2 23

因篇幅问题不能全部显示,请点此查看更多更全内容

Top