搜索
您的当前位置:首页正文

中考相似三角形经典综合题(学生版)

来源:好走旅游网


中考相似三角形经典综合题

1、如图,在平面直角坐标系中,点0为坐标原点,A点的坐标为(3,0),以0A为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从0点出发沿0C向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。设运动时间为t秒. (1)求线段BC的长;

(2)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F。设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围:

111

(3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BEF,使点E的对应点E落在线段AB上,点F的对应点是F,EF交x轴于点G,连接PF、QG,当t为何值时,2BQ-PF= 1

11

3QG? 3

2、在平面直角坐标系中,已知点A(﹣2,0),点B(0,4),点E在OB上,且∠OAE=∠0BA.

(Ⅰ)如图①,求点E的坐标;

(Ⅱ)如图②,将△AEO沿x轴向右平移得到△A′E′O′,连接A′B、BE′.

①设AA′=m,其中0<m<2,试用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;

②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).

3、如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为ι秒. (1)当ι= 7 时,点P与点Q相遇;

(2)在点P从点B到点C的运动过程中,当ι为何值时,△PCQ为等腰三角形? (3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为s平方单位. ①求s与ι之间的函数关系式;

②当s最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直

线PC上,求折叠后的△APD与△PCQ重叠部分的面积.

4、如图,点A是△ABC和△ADE的公共顶点,∠BAC+∠DAE=180°,AB=k·AE,AC=k·AD,点M是DE的中点,直线AM交直线BC于点N. (1)探究∠ANB与∠BAE的关系,并加以证明.

(2)若△ADE绕点A旋转,其他条件不变,则在旋转的过程中(1)的结论是否发生变化?如果没有发生变化,请写出一个可以推广的命题;如果有变化,请画出变化后的一个图形,并证明变化后∠ANB与∠BAE的关系. A D

M C E

N

B

5.如图,已知一个三角形纸片ABC,BC边的长为8,BC边上的高为6,B和C都为锐角,M为AB一动点(点M与点A、B不重合),过点M作MN∥BC,交AC于点N,在△AMN中,设MN的长为x,MN上的高为h. (1)请你用含x的代数式表示h.

(2)将△AMN沿MN折叠,使△AMN落在四边形BCNM所在平面,设点A落在平面的点为A1,△A1MN与四边形BCNM重叠部分的面积为y,当x为何值时,y最大,最大值为多少?

6.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.

(1)求证:EG=CG; (2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?

D A D A A D G F G E E F E C C C B F B B 图② 图① 图③

7.如图,抛物线经过A(4,,0)B(1,,0)C(0,2)三点. (1)求出抛物线的解析式;

(2)P是抛物线上一动点,过P作PMx轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;

8.如图,在RtABC中,∠ACB= 90 ,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EMBD垂足为M,ENCD垂足为N。

0

(1) 当AD=CD时,求证:DE∥AC;

(2) 探究:AD为何值时,△BME与△CNE相似?

(3) 探究:AD为何值时,四边形MEND与△BDE的面积相等?

9.如图,已知直线l1:y28x与直线l2:y2x16相交于点C,l1、l2分别交x轴于33A、B两点.矩形DEFG的顶点D、E分别在直线l1、l2上,顶点F、G都在x轴上,且

点G与点B重合.

(1)求△ABC的面积;

(2)求矩形DEFG的边DE与EF的长;

(3)若矩形DEFG从原点出发,沿x轴的反方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤12)秒,矩形DEFG与△ABC重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范围.

yl2E D C l1y A O

B F (G) x

10.如图,矩形ABCD中,AD3厘米,ABa厘米(a3).动点M,N同时从B点

出发,分别沿BA,BC运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒. (1)若a4厘米,t1秒,则PM______厘米;

(2)若a5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;

(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;

(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由.

D Q C D Q P C N B P A M N B A M

11.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. ⑴ 求证:△AMB≌△ENB;

⑵ ①当M点在何处时,AM+CM的值最小;

②当M点在何处时,AM+BM+CM的值最小,并说明理由; ⑶ 当AM+BM+CM的最小值为31时,求正方形的边长.

12.如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题: (1)当t=2时,判断△BPQ的形状,并说明理由; (2)设△BPQ的面积为S(cm2),求S与t的函数关系式;

(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ?

A D

N E M B C

13.在直角梯形OABC中,CB∥OA,∠COA=90º,CB=3,OA=6,BA=35.分别以

OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系. (1)求点B的坐标; (2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求

直线DE的解析式;

(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N.使

以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.

y M C B D E N O A F x (第26题 图1)

14.在图15-1至图15-3中,直线MN与线段AB相交 于点O,∠1 = ∠2 = 45°.

(1)如图15-1,若AO = OB,请写出AO与BD

的数量关系和位置关系;

(2)将图15-1中的MN绕点O顺时针旋转得到

图15-2,其中AO = OB. 求证:AC = BD,AC ⊥ BD;

(3)将图15-2中的OB拉长为AO的k倍得到

图15-3,求

BDAC的值.

M D 2

O A

1 B

N

图7-1

D M

2 O A

1 C B

N

图7-2

D M

2 O A

1 C B

N

图7-3

15.如图,已知过A(2,4)分别作x轴、y轴的垂线,垂足分别为M、N,若点P从O点出发,沿OM作匀速运动,1分钟可到达M点,点Q从M点出发,沿MA作匀速运动,1分钟可到达A点。 (1)经过多少时间,线段PQ的长度为2?

(2)写出线段PQ长度的平方y与时间t之间的函数关系式和t的取值范围;

(3)在P、Q运动过程中,是否可能出现PQ⊥MN?若有可能,求出此时间t;若不可能,请说

明理由;

(4)是否存在时间t,使P、Q、M构成的三角形与△MON相似?若存在,求出此时间t;若不可

能,请说明理由;

Y

N A

Q

O P M X

16、如图,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一边QP在BC边上,E、F分别在AB、AC上,AD交EF于点H. (1)求证:

(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求出最大面积;

(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线DA匀速向上运动(当矩形的边PQ到达A点时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.

因篇幅问题不能全部显示,请点此查看更多更全内容

Top