有关时间,除了需要在step中设置时间以外,在load功能模块和interaction模块中还可以创建与时间有关的幅值曲线。Tools-Amplitude-Create,选择幅值曲线类型,将Time Span设为Step time或Total time。 2. 需要设置参考点的情形Tools-Reference Point 离散刚体部件或解析刚体部件都需要为其设置参考点;
在Interaction模块中定义刚体约束、显示体约束和耦合约束时,必须指定约束的参考点;
对于采用广义平面应变单元(generalized plane strain elements)的平面变形体部件,必须为其指定一个参考点,作为参考节点(reference node)。 Note:Part模块中每个部件只能定义一个参考点;Assembly、Interaction和Load模块中可以为装配提定义多个参考点;Mesh中生成单元网格时,参考点将被忽略。
3. 需要创建面的情形Tools-Surface
在Interaction模块中定义基于面的接触或约束时,或Load模块中施加压力(Pressure)时,建议为相应区域定义面,并注意命名。 4. 需要定义集合的情形 Tools-Set
Property模块中,若一部件包含不同材料,可分别为不同区域建立集合并赋予不同的截面属性;
Interaction模块中定义基于节点或单元的接触或约束时,可先为相应区域定义集合;
Load模块中定义载荷和边界条件时,可先为相应区域定义集合; 定义场变量输出或历史变量输出时,可指定输出某个集合上的计算结果。 Note:在Part和Assembly中都可以定义集合,二者有区别。
5. Stp文件格式导入abaqus可能会丢失零部件间的装配关系,而igs格式一般不会出现这类问题。 6. 两种类型的刚体部件对比:
离散刚体部件可以是任意的几何形状,可以为其添加part模块中的各种特征;解析刚体部件只能是较简单的几何形状,计算代价要比离散刚体部件小。尽量采用解析刚体部件。
Note:参考点的位置会影响刚体所受弯矩和可能发生的转动,因此对于动力分析,如果考虑了转动惯量对模型的影响,在定义转动惯量时必须合理设定刚体参考点的位置。
Interaction模块中的刚体约束和显示体约束,可以将变形体变为刚体,其各部分的运动情况完全取决于所指定的参考点的运动情况。在删除或抑制掉这两种约束后,就恢复为变形体。 7. ABAQUS中的定位约束注意问题:
每个定位约束操作对象只能是两个实体(一个移动一个固定); 尽管两个定位约束在理论上不应该是相互冲突的,但由于模型中存在数值误差,仍可能给出错误信息,导致无法完成定位。解决办法有两个:一是
将已有的定位约束转化为绝对定位,然后施加新的约束;二是先测量再移动到相应距离。
8. 对部件不能直接进行布尔操作,对部件实体可以进行布尔操作,在Assembly模块中单击Instance-Merge/Cut Instances 这种操作的优点是,不需要为相关区域施加tie约束;不需要多次定义材料属性。 9. 动态响应分析步必须出现在频率提取分析步之后。
10. 场变量输出用于描述某个量随空间位置的变化,历史变量输出用于描述某个量随时间的变化。
11. 绑定接触和绑定约束都是让两个面连接在一起不再分开。二者的一重要区别在于:绑定约束只能在模型的初始状态中定义;绑定接触可以在某个分析步中定义,在这个分析步之前,两个面之间没有连接关系。绑定约束的优点在于,分析过程中不再考虑从面节点的自由度,也不需要判断从面节点的接触状态,计算时间会大大缩短。
12. 实体单元的节点没有旋转自由度,定义约束时是否选中UR1、UR2、UR3都没有关系,对分析结果没有影响。
13. 点质量、转动惯量、弹簧、阻尼器等工程特征可以通过Special菜单来定义。(在Interaction模块或Property模块)。
14. 动态分析时,若刚体参考点的3个平动自由度没有被完全约束住,就需要在刚体参考点上定义刚体的质量;如果刚体参考点的3个转动自由度没有被完全约束住,就需要在刚体参考点上定义整个刚体的转动惯量。Special-Inertia-Create-Point Mass/Inertia。
15. 定义刚体参考点时,最好选择质心。质心位置可以在Part模块中Query查询功能选择Volume properties,将给出部件体积、形心坐标和惯性矩结果。
16. 用aba/standard分析复杂非线性问题时,施加位移载荷可大大降低收敛的难度,因为这时不必通过反复迭代来找到每个时间增量步上的位移解。若施加力载荷时无法收敛,不妨先施加位移载荷(当然要通过经验估计模型的位移量),然后在下一个分析步中去掉此位移载荷,恢复正常力载荷。 17. 高亮显示一个集合,选择Replace Selected右边的图标Create Display Group,里边有nodal,可以选取一些节点集合。
18. 在初始分析步中创建速度边界条件时,abaqus不要求给出速度大小,其含义是在初始状态的速度为0(不止是速度,所有在初始分析步中的边界条件的大小都为0)。这时如果在预定义场中定义了不同的初始速度将不会起作用。如果希望以初始速度开始分析,可以去掉速度边界条件,只保留速度预定义场。
19. 快速定义路径:Tools-Path-Create,两种方式:选择节点Node List,首先通过显示组Display Group只显示路径上的节点或单元,再单击Common Options按钮,在Label标签页中选中Show node labels显示节点坐标;另外一种方式就是选择边Edge List,有逐个选择、选择特征边和自动找出最短路径三种方法。
20. ABAQUS中使用局部坐标系有两种情况:
在节点上使用局部坐标系:在定义边界条件(包括位移、速度、加速度)、集中载荷、弯矩载荷和线性方程约束时所选择的局部坐标系是基于节点的。关键词为*TRANSFROM
在单元上使用局部坐标系:在定义材料属性、耦合约束和连接单元时所选择的局部坐标系是基于单元的,关键词为*ORIENTATION
(如单元上的应力应变)会自动选取定义的21. 后处理中显示单元分析结果
单元局部坐标系,而显示节点分析结果(如节点上位移、应力应变)时总是使用默认的全局直角坐标系,即使建模时定义了节点局部坐标系也会被忽略。如果希望显示局部坐标系下的节点分析结果,可以在Visualization模块中选择Result-Options,选中Transformation,单击Nodal。这时显示的结果都是基于局部坐标系的。
22. 关于Inp文件,如果错误提示Node 0或Element 0,往往可能编辑inp文件时不小心出现了空格。关键词和参数都不区分大小写,唯一区分大小写的是文件名。
23. 适用重启动分析的两种情形,可以节省时间:一是希望在已有分析结果的基础上继续分析其他工况(不同的载荷及边界条件等)。如可首先在模型中定义一部分载荷工况,快速完成分析,检查确认分析结果后,使用重启动分析完成其他载荷工况的分析;二是分析过程异常终止,如无法收敛、达到了分析步允许的最大增量步数、断电等。在纠正错误之后,可使用重启动分析继续完成分析。
三维实体单元的类型及应用选择
ABAQUS 具有丰富的单元库,单元种类多达433 种,共分为分8 大类:连续体单元(continuum element,即实体单元solidelement)、壳单元、 薄膜单元、 梁单元、 杆单元、 刚体单元、
连接单元和无限元。
另外,abaqus 还提供了针对特殊问题的特种单元: 如针对钢筋混凝土结构或轮胎结构的加强筋单元, 针对海洋工程结构的土壤/管柱连接单元和锚链单元等。 用户还可以通过用户子程序来建立自定义单元。
因为别的单元,到目前为止我接触了解的不够深,所以暂且在这个帖子里先说一下 类单元中的连续体单元(continuum element,即实体单元solidelement)。
在ABAQUS中,基于应力/位移的实体单元类型最为丰富:
(1) 在ABAQUS/Sandard中,实体单元包括二维和三维的线性单元和二次单元,均可以采用完全积分或缩减积分,另外还有修正的二次Tri
单元(三角形单元)和Tet单元(四面体单元),以及非协调模式单元和杂交单元。
(2)ABAQUS/Explicit中,实体单元包括二维和三维的线性缩减积分单元,以及修正的二次二次Tri单元(三角形单元)和Tet单元(四面体单元),没有二次完全积分实体单元。
按照节点位移插值的阶数,ABAQUS里的实体单元可以分为以下三类: 线性单元(即一阶单元):仅在单元的角点处布置节点,在各个方向都采用线性插值。
二次单元(即二阶单元):在每条边上有中间节点,采用二次插值。 修正的二次单元(只有Tri 或Tet 才有此类型):在每条边上有中间节点,并采用修正的二次插值。
1、线性完全积分单元:当单元具有规则形状时,所用的高斯积分点的数目足以对单元刚度矩阵中的多项式进行精确积分。
缺点:承受弯曲载荷时,会出现剪切自锁,造成单元过于刚硬,即使划分很细的网格,计算精度仍然很差。7 r* t4 Z6 W. _/ {, t 2、二次完全积分单元: 优点:
(1)应力计算结果很精确,适合模拟应力集中问题; (2)一般情况下,没有剪切自锁问题(shear locking)。 但使用这种单元时要注意:
(1)不能用于接触分析;
(2)对于弹塑性分析,如果材料不可压缩(例如金属材料),则容易产生体积自锁(volumetric locking);
(3)当单元发生扭曲或弯曲应力有梯度时,有可能出现某种程度的自锁。
3、线性减缩积分单元:
减缩积分单元,比普通的完全积分单元在每个方向少用一个积分点; 线性缩减积分单元:只在单元的中心有一个积分点,由于存在沙漏数值问题(hourglass)而过于柔软。采用线性缩减积分单元模拟承受弯曲载荷的结构时,沿厚度方向上至少应划分四个单元。 优点:
(1)对位移的求解计算结果较精确;
(2)网格存在扭曲变形时(例如Quad 单元的角度远远大于或小于90º),分析精度不会受到明显的影响; (3)在弯曲载荷下不易发生剪切自锁。 缺点:
(1)需要较细网格克服沙漏问题;
(2)如果希望以应力集中部位的节点应力作为分析目标,则不能选用此单元。
——因为线性缩减积分单元只在单元的中心有一个积分点,相当于常应力单元,在积分点上的应力结果实相对精确的,而在经过外插值和平均后得到的节点应力则不精确。
4、二次减缩积分单元
不但保持线性减缩积分单元的上述优点,还具有如下特点: (1)即使不划分很细的网格也不会出现严重的沙漏问题; (2)即使在复杂应力状态下,对自锁问题也不敏感。 使用这种单元要注意: (1)不能用于接触分析; (2)不能用于大应变问题;
(3)存在与线性减缩积分单元类似的问题,由于积分点少,得到的节点应力的精度往往低于二次完全积分单元。
5、非协调模式单元(imcompatible modes)
—— 仅在ABAQUS/Standard 有,可克服线性完全积分单元中的剪切自锁问题。
ABAQUS中的非协调模式单元和MSC.NASTRAN中的4节点四边形单元或8节点六面体单元很相似,所以在比较着两种有限元软件的计算结果时会发现,如果在ABAQUS中选择了非协调模式单元,得到的分析结果会和MSC.NASTRAN的结果一致。 优点:
(1)克服了剪切自锁问题,在单元扭曲比较小的情况下,得到的位移和应力结果很精确;
(2)在弯曲问题中,在厚度方向上只需很少的单元,就可以得到与二次
单元相当的结果,而计算成本却明显降低;
(3)使用了增强变形梯度的非协调模式,单元交界处不会重叠或开洞,因此很容易扩展到非线性、有限应变的位移。
但使用这种单元时要注意:如果所关心部位的单元扭曲比较大,尤其是出现交错扭曲时,分析精度会降低。
6、使用Tri 或Tet 单元要注意:
如果能用Quad 或Hex 单元,就尽量不要使用Tri或Tet 单元; (1)线性Tri 或Tet 单元的精度很差,不要在模型中所关心的部位及其附近区域使用;
(2)二次Tri 或Tet 单元的精度较高,而且能模拟任意的几何形状,但计算代价比Quad 或Hex 单元大。
(3)二次Tet 单元(C3D10)适于ABAQUS/Standard 中的小位移无接触问题;
修正的二次Tet 单元(C3D10M)适于ABAQUS/Explicit 和ABAQUS/Standard 中的大变形和接触问题;
(4)使用自有网格不易通过布置种子来控制实体内部的单元大小。
7、杂交单元
在ABAQUS/Standard 中,每一种实体单元都有其对应的杂交单元,用于不可压缩材料(泊松比为0.5,如橡胶)或近似不可压缩材料(泊松比大于0.475)。除了平面应力问题之外,不能用普通单元来模拟不可压
缩材料的响应,因为此时单元中的应力士不确定的。 ABAQUS/Explicit 中没有杂交单元。
混合使用不同类型的单元:
1、当三维实体几何形状复杂时,无法再整个实体上使用structure结构化网格或sweep扫略网格划分技术得到Hex单元网格,一种常用的做法是:
(1)对实体不重要的部分使用Free自由网格划分技术,生成Tet单元网格,而对于所关心的部分采用结构化网格或扫略网格划分技术,生成Hex单元网格。
(2)在生成这样的网格时,ABAQUS会给出提示信息,提示将生成非协调的网格,在不同单元类型的交界处将自动创建Tie绑定约束。 2、需要注意的是,在不同单元类型网格的交界处,即使单元角部节点是重合的,仍然有可能出现不连续的应力场,而且在交界处的应力可能大幅度的增大。
如果在同一实体中混合使用线性和二次单元,也会出现类似的问题。 因此在混合使用不同类型单元时,应确保其交界处远离所关心的区域,并仔细检查分析结果是否正确。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- haog.cn 版权所有 赣ICP备2024042798号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务