【例1】如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0). (1)求抛物线的解析式及顶点D的坐标; (2)判断△ABC的形状,证明你的结论;
(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.
【变式练习】
2
1. 如图,已知抛物线y=ax +bx+c与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点. (1)求此抛物线的解析式;
(2)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A.求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.
y A O B C x
1
2. 如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)
(1)求抛物线的解析式
(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.
(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.
【能力提升】
1. 已知,如图11,二次函数yax22ax3a(a0)图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线l:y3x3对称.
3(1)求A、B两点坐标,并证明点A在直线l上; (2)求二次函数解析式;
(3)过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HNNMMK和的最小值.
yy
ll
HH KK
BAOBxOAx 图11 备用图
2
2.如图.在直角坐标系中,已知点A(0.1.),B(4.4).将点B绕点A顺时针方向旋转90°得到点C,顶点在坐标原点的抛物线经过点B. (1) 求抛物线的解析式和点C的坐标;
(2) 抛物线上一动点P.设点P到x轴的距离为d1,点P到点A的距离为d2,试说明d2d11; (3) 在(2)的条件下,请探究当点P位于何处时.△PAC的周长有最小值,并求出△PAC的周长的最小值。 25.(14分)(2017•福建)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b. (Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示); (Ⅱ)说明直线与抛物线有两个交点; (Ⅲ)直线与抛物线的另一个交点记为N.
(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围; (ⅱ)求△QMN面积的最小值.
3
【例2】如图,已知直线y11x1与y轴交于点A,与x轴交于点D,抛物线yx2bxc与直线22交于A、E两点,与x轴交于B、C两点,且B点坐标为 (1,0)。(1)求该抛物线的解析式;
(2)动点P在轴上移动,当△PAE是直角三角形时,求点P的坐标P。
(3)在抛物线的对称轴上找一点M,使|AMMC|的值最大,求出点M的坐标。
【变式练习】
1.如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(﹣1,0),B(﹣l,2),D(3,0).连接DM,并把线段DM沿DA方向平移到ON.若抛物线y=ax2+bx+c经过点D、M、N. (1)求抛物线的解析式.
(2)抛物线上是否存在点P,使得PA=PC?若存在,求出点P的坐标;若不存在,请说明理由.
(3)设抛物线与x轴的另一个交点为E,点Q是抛物线的对称轴上的一个动点,当点Q在什么位置时有|QE﹣QC|最大?并求出最大值.
4
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- haog.cn 版权所有 赣ICP备2024042798号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务