您好,欢迎来到好走旅游网。
搜索
您的当前位置:首页积分公式大全

积分公式大全

来源:好走旅游网
常 用 积 分 公 式

(一)含有axb的积分(a0)

dx1lnaxbC1.axb=a

1(axb)1C(axb)dx2.=a(1)(1)

x1dx(axbblnaxb)C23.axb=a

11x222(axb)2b(axb)blnaxbCdx3a24.axb= 1axbdxlnCx(axb)bx5.= 1aaxbdxlnC2x2(axb)x6.=bxb

x1bdx(lnaxb)C2(axb)2aaxb7.=

1

2x21b(axb)2dxa3(axb2blnaxbaxb)C8.=

11axbdxlnCx(axb)2b(axb)b2x9.=

(二)含有axb的积分

2(axb)3Caxbdx=3a

10.2(3ax2b)(axb)3Cxaxbdx211.=15a

12.x22(15a2x212abx8b2)(axb)3Caxbdx3=105a

13.

x2dx(ax2b)axbCaxb=3a2

14.

x22222dx(3ax4abx8b)axbCaxb=15a3

dxxaxb15.=

1lnbaxbbC(b0)axbb2axbarctanC(b0)bb

2

216.xdxaxbadxbx2bxaxb axb=

17.

dxaxb2axbbdxxaxbx=

18.

axbadxaxbdxx2xaxb x2=

22(三)含有xa的积分

dx1xarctanC22xaaa19.=

dxx2n3dx(x2a2)n2(n1)a2(x2a2)n12(n1)a2(x2a2)n120.=

1xadxlnC222axa21.xa=

2(四)含有axb(a0)的积分

1arctanab1lndx2ab2axb22.=

axCb(b0)axbC(b0)axb 3

x23.ax2bdx1=2alnax2bC

x224.ax2bdxx=abdxaax2b

dx1lnx225.x(ax2b)=2bax2bC

26.dx1adxx2(ax2b)=bxbax2b

27.dxaax2b1x3(ax2b)=2b2lnx22bx2C

28.dxx1d(ax2b)2=2b(ax2b)x2bax2b

(五)含有ax2bxc(a0)的积分

22axb4acb2arctan4acb2Cdx1ln2axbb24ac29.ax2bxc=b24ac2axbb24acC4

(b24ac)(b24ac)

x1bdx2dxlnaxbxc22aax2bxc 30.axbxc=2a22(六)含有xa(a0)的积分

31.

dxx2a2=

arshxC122ln(xxa)C a=

32.

dx(x2a2)3x=a2xa22C

33.

xxa22dx22=xaC

34.

x(x2a2)3dx=

1xa22C

35.

2xa22dxxaln(xx2a2)C22xa2=2

x236.

x2(xa)223dx=

xx2a2ln(xx2a2)C

37.

xdxx2a2=1x2a2alnCax

5

38.

x2x2a2C222xa=ax

dx39.2xa22xaln(xx2a2)Cx2a2dx2=2

40.x342222(2x5a)xaaln(xx2a2)C(xa)dx8=8

22341.

22xxadx1(x2a2)3C=3

42.

2x4xa2222(2xa)xaln(xx2a2)Cx2a2dx8=8

43.

x2a2a22x2a2xaalnCdxxx=

44.

x2a2x2a2dxln(xx2a2)C2xx=

22(七)含有xa(a0)的积分

45.

dxxa=

22xxarchC1xa=

lnxx2a2C

6

46.

dx(x2a2)3=ax2xa22C

47.

xxa22dx22xaC =48.

x(xa)223dx=

1xa22C

49.

2xa22dxxalnxx2a2C22xa2=2

x250.

x2(x2a2)3dx=

xx2a2lnxx2a2C

51.

xdxx2a2=1aarccosCax

52.

x2x2a2Cx2a2=a2x

dx53.2xa22xalnxx2a2Cx2a2dx2=2

.

x342222(2x5a)xaalnxx2a2C(xa)dx8=8

2237

1(x2a2)3Cxxadx55.=3

22x56.24xa2222(2xa)xalnxx2a2Cx2a2dx8=8

57.

a22x2a2xaaarccosCdxxx=

58.

x2a2x2a2dxlnxx2a2C2xx=

22(八)含有ax(a0)的积分

59.

dxa2x2=

arcsinxCa

60.

dx(a2x2)3x=a2ax22C

61.

xax22dx22=axC

62.

x(a2x2)3dx1=ax22C

8

63.

2xax22dxaxarcsinCa2x222a=

x2.

x2(a2x2)3dxx22=axarcsinxCa

65.

xdxa2x2=1aa2x2lnCax

66.

x2a2x2C222ax=ax

dx67.2xax2222axarcsinCaxdx2a=2

68.(a2x2)3dxx3x(5a22x2)a2x2a4arcsinC8a=8

69.

22xaxdx1(a2x2)3C=3 70.

2x4xax222222(2xa)axarcsinCaxdx8a=8

71.

aa2x222a2x2axalnCdxxx=

9

72.

a2x2a2x2xdxarcsinC2xxa=

2axbxc(a0)的积分 (九)含有73.

12ln2axb2aaxbxcC2aaxbxc=

dx74.2axbax2bxcaxbxcdx=4a 24acb28a3ln2axb2aax2bxcC

75.

xaxbxc2dx1ax2bxc=a

b2a3ln2axb2aax2bxcC

76.

dxcbxax2=

12axbarcsinC2ab4ac

77.2axbb24ac2axb2cbxaxarcsinC2cbxaxdx328ab4ac=4a

10

78.

xcbxax2dx1=acbxax2b2axb2a3arcsinb24acC xa(十)含有xb或(xa)(bx)的积分

xa79.

xbdx=(xb)xaxb(ba)ln(xaxb)C

a80.

xbxdxxaxa=(xb)bx(ba)arcsinbxC

81.

dx(xa)(bx)=

2arcsinxabxC(ab)

(xa)(bx)dxxab82.2=4(xa)(bx)(ba)2xa4arcsinbxC (十一)含有三角函数的积分

83.sinxdx=cosxC

84.cosxdx=sinxC

11

(ab)

tanxdxlncosxC85.=

86.cotxdx=lnsinxC

xlntan()Csecxdx4287.==lnsecxtanxC

cscxdx88.=

lntanxC2=lncscxcotxC

sec.2xdx=tanxC

90.

2cscxdx=cotxC

91.secxtanxdx=secxC

92.cscxcotxdx=cscxC

x1sin2xCsinxdx2493.=

2x1sin2xCcosxdx2494.=

2 12

1n1n1sinxcosxsinn2xdxsinxdxn95.=n

n1n1n1n2cosxsinxcosxdxcosxdxnn96.=

ndx1cosxn2dxn1nn297.sinx=n1sinxn1sinx

dx1sinxn2dxn1nn298.cosx=n1cosxn1cosx

1m1m1n1m2ncosxsinxcosxsinxdxcosxsinxdxmn99.=mn

mn1n1mn2cosm1xsinn1xcosxsinxdxmn=mn 11cos(ab)xcos(ab)xCsinaxcosbxdx2(ab)100.=2(ab)

11sin(ab)xsin(ab)xCsinaxsinbxdx2(ab)101.=2(ab)

11sin(ab)xsin(ab)xCcosaxcosbxdx2(ab)2(ab)102.=

13

2dxarctan22103.absinx=abatanxb2C22ab(a2b2)

x22bba12lnC22dxxbaatanbb2a22104.absinx=atan(a2b2)

2ababxdxarctan(tan)Cababab2105.abcosx=(a2b2)

x1ab2lnabbaxdxtan2106.abcosx=

tanabbaCabba(a2b2)

dx1barctan(tanx)C2222a107.acosxbsinx=ab

1btanxadxlnC22222abbtanxa108.acosxbsinx=

11sinaxxcosaxCxsinaxdx2aa109.=

1222xcosaxxsinaxcosaxCxsinaxdx23aaa110.=

2 14

11cosaxxsinaxCxcosaxdx2aa111.=

1222xsinaxxcosaxsinaxCxcosaxdx23aaa112.=

2(十二)含有反三角函数的积分(其中a0)

xxarcsindxxarcsina2x2Ca=a113.

x2a2xx2x()arcsinax2Cxarcsindx4a4a=2114.

x3x12x222arcsin(x2a)axCxarcsindxa9a=3115.

2xx22arccosdxxarccosaxCa=a116.

x2a2xx2x2()arccosaxCxarccosdx4a4a=2117.

x3x12x222arccos(x2a)axCxarccosdxa9a=3118.

2 15

xxaarctandxxarctanln(a2x2)Ca=a2119.

x12xa2xarctandx(ax)arctanxCa2a2120.=

x3xa2a3xarctanxln(a2x2)Cxarctandxa66a=3121.

2(十三)含有指数函数的积分

1xaCadxlna122.=

x1axeCedxa123.=

ax1(ax1)eaxCxedx2124.=a

ax1naxnn1axxexedxxedxaa125.=

naxxx1xaaC2xadxlna(lna)126.=

x 16

1nxnxaxn1axdxxadxlna127.=lna

nx1eax(asinbxbcosbx)Cesinbxdx22128.=ab

ax1eax(bsinbxacosbx)Cecosbxdx22129.=ab

ax1axn1esinbx(asinbxnbcosbx)esinbxdx222130.=abn

axnn(n1)b2axn22esinbxdx22abn

1eaxcosn1bx(acosbxnbsinbx)ecosbxdx222131.=abn

axnn(n1)b2axn22ecosbxdx22 abn

(十四)含有对数函数的积分

lnxdx132.=xlnxxC

dxlnlnxC133.xlnx=

17

1n11x(lnx)Cxlnxdxn1n1134.=

n135.

n(lnx)dx=

x(lnx)nn(lnx)dxn1

1nm1nmn1x(lnx)x(lnx)dxx(lnx)dxm1136.=m1

mn(十五)含有双曲函数的积分

137.shxdx=chxC

138.chxdx=shxC

thxdx139.=lnchxC

x1sh2xCshxdx140.=24

2141.

2chxdxx1sh2xC=24

(十六)定积分

18

142.cosnxdx=sinnxdx=0

143.cosmxsinnxdx=0

0,mncosmxcosnxdx,mn144.=

0,mnsinmxsinnxdx,mn145.=

0,mn,mnsinmxsinnxdxcosmxcosnxdx146.0=0=2

147.

In=20sinxdxn=20cosnxdx

n1In2In =n

Inn1n3nn24253 (n为大于1的正奇数),I1=1

Inn1n3nn231422(n为正偶数),I0=2

19

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- haog.cn 版权所有 赣ICP备2024042798号-2

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务