您好,欢迎来到好走旅游网。
搜索
您的当前位置:首页北师大数学教案八年级

北师大数学教案八年级

来源:好走旅游网


北师大数学教案八年级(一)

教学目标

1、经历一般规律的探索过程,发展学生的抽象思维能力。

2、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展学生的数学应用能力。

教学重点

1、 一次函数、正比例函数的概念及两者之间的关系。

2、 会根据已知信息写出一次函数的表达式。教学难点一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、课件

教学过程

一、创设问题情境,引入新课

1、 简单复习函数的概念(设在某一变化过程中有两个变量x和y,如果 ,那么我们称y是x的函数,其中x是自变量,y是因变量)

2、 演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,

弹簧的长度是哪个变量的函数?为什么?

3、 汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?

二、新课学习

1、 做一做。让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。

2、 一次函数、正比例函数的概念学习讨论:刚才写出的两个关系式y=3+0.5x、y=100-0.18x在形式上有什么相同之处?

让学生分析出他们的共同点:①左边都是因变量,右边都是含自变量的代数式;②自变量x与因变量y的次数都是1;③从形式上看,形式都为y=kx+b,k,b为常数。问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。

3、 例题学习

例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进行口答。

例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的能力。其中第三问严格地讲应先判断出工资的范围是800三、随堂练习

1、找出下面的一次函数,并指出其中k、b的值。若不是一次函数,请说明理由。a、y= +x b、y=-0.8x c、y=0.3+2x2 d、y=6- 2、已知函数y=(m+1)x+(m2-1),当m ,y是x的一次函数;当m ,y是x的正比例函数。

四、拓展应用 学校组织部分学生去井岗山体验历史。出行方面准备从甲、乙两家旅行社中选择一家代办,已知两家旅行社报价相同,都是每人200元。不过,甲旅行社开出的团体(15人以上)优惠办法是返还现金500元作为门票费,乙旅行社的团体优惠是,所有人员费用均打9折。设学生人数为x人,两家旅行社的收费分别为y甲、y乙,

解答下列问题:(1)分别写出两家旅行社收费y(元)与学生人数x(人)之间的函数关系式;该关系式是什么函数?(y甲=200x-500,y乙=180x)(2)如果学生为20人,分别计算两家旅行社收费。到哪家合算?(y甲=200×20-500=3500(元);y乙=180×20=3600(元);y甲< y乙,所以到甲旅行社合算。)(3)在什么情况下,选择乙旅行社?(依题意得, y甲- y乙>0,即(200x-500) -180x>0,解不等式得,x>25,所以当学生多于25人时,到乙旅行社合算。)

五、课堂小结

让学生归纳本节课学习内容:

1、一次函数、正比例函数概念以及它们之间的关系。

2、会根据已知信息写出一次函数的关系式。

六、作业读一读:中国古代漏刻必做题:161页习题6.2第1、2、页试一试

北师大数学教案八年级(二)

教学目标

1、 理解并掌握等腰三角形的判定定理及推论

2、 能利用其性质与判定证明线段或角的相等关系.

教学重点

等腰三角形的判定定理及推论的运用

教学难点

正确区分等腰三角形的判定与性质.

题选做题:1613

能够利用等腰三角形的判定定理证明线段的相等关系.

教学过程:

一、复习等腰三角形的性质

二、新授:

i提出问题,创设情境

出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(b点)为b标,然后在这棵树的正南方(南岸a点抽一小旗作标志)沿南偏东60°方向走一段距离到c处时,测得∠acb为30°,这时,地质专家测得ac的长度就可知河流宽度.

学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.

ii引入新课

1.由性质定理的题设和结论的变化,引出研究的内容——在△abc中,苦∠b=∠c,则ab= ac吗?

作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?

2.引导学生根据图形,写出已知、求证.

2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).

强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.

4.引导学生说出引例中地质专家的测量方法的根据.

iii例题与练习

1.如图2

其中△abc是等腰三角形的是 [ ]

2.①如图3,已知△abc中,ab=ac.∠a=36°,则∠c______(根据什么?).

②如图4,已知△abc中,∠a=36°,∠c=72°,△abc是______三角形(根据什么?).

③若已知∠a=36°,∠c=72°,bd平分∠abc交ac于d,判断图5中等腰三角形有______.

④若已知 ad=4cm,则bc______cm.

3.以问题形式引出推论l______.

4.以问题形式引出推论2______.

例: 如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.

分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.

练习:5.(l)如图6,在△abc中,ab=ac,∠abc、∠acb的平分线相交于点f,过f作de//bc,交ab于点d,交ac于e.问图中哪些三角形是等腰三角形?

(2)上题中,若去掉条件ab=ac,其他条件不变,图6中还有等腰三角形吗?

iv课堂小结

1.判定一个三角形是等腰三角形有几种方法?

2.判定一个三角形是等边三角形有几种方法?

3.等腰三角形的性质定理与判定定理有何关系?

4.现在证明线段相等问题,一般应从几方面考虑?

v布置作业

1.阅读教材

2.书面作业:教材第150页第12题

3、《课堂感悟与探究》

北师大数学教案八年级(三)

教学目标:

1. 经历并了解平行四边形判别方法的探索过程,使学生逐步掌握说理的基本方法.探索并掌握平行四边形的两种判别条件,能根据判别方法进行相关的应用。

2. 在探索过程中发展学生的合理推理意识、主动探究的习惯。体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。

3. 在操作学习机的“图形计算器”活动过程中,加深师生的情感.培养学生的观察能力,并提高学生的学习兴趣.在学习过程中,来体会平行四边形的图形美和内在美. 同时使“图形计算器”真正成为学生的学具。

教学重点:探索并掌握平行四边形的判别条件。( 一组对边平行且相等的四边形是平行四边形;两条对角线互相平分的四边形是平行四边形)。

教学难点:经历平行四边形判别条件的探索过程,发展学生的合情推理意识、主动探索的习惯,逐步掌握说理的基本方法。

教学媒体设计:

为了实现教学目标、优化教学过程、突破教学难点、充分调动学生的各种感官、吸引注意力,课堂上主要采用诺亚舟学习机的“图形计算器”进行辅助教学,通过大屏幕媒体展示教学和学生对“图形计算器”充分利用,使教学过程与知识发展过程和思维过程三者同步,分别在创设情境;观察、探索;理顺、归纳;运用、提高;回顾、反思;布置作业环节都将发挥“图形计算器”的实战功能、让学生真正做到课上听懂、理解透彻。将学生的课堂练习成果进行快速展示,从而节约时间,提高课堂效率。

教学过程设计:(t—教师,s—学生)

问题与情境 师 生 行 为 设 计 意 图

活动板块1

前面我们已经学习了平行四边形概念和性质,我们来复习:

(1)平行四边形概念。

(2)平行四边形性质。

(3)如果我们自己作平行四边形,你是如何说明理由的?

进而得出需进行平行四边形判别条件的探究。

先由学生根据自主做图的基础上,进行猜想,具备什么条件的四边形是平行四边形,将猜想记录到练习本上。利用学习机的“图形计算器”将你的猜想进行验证。

活动板块2

在学生合作探究基础上,对小组活动及时评价、引导。

同时观察是否有小组已经经过猜想、通过实验验证的方法获得了平行四边形判别条件。

适时地将学生的探究方向指引到通过平行四边形的性质来反向探究平行四边形判别条件,进而得出平行四边形判别方法。

适时地选出一小组成员在台前利用教师学习机的“图形计算器”通过大屏幕演示小组成果…

得出平行四边形判别方法:两条对角线互相平分的四边形是平行四边形 或(一组对边平行且相等的四边形是平行四边形)。

活动板块3

学生继续活动,探究平行四边形判别的其他方法。

适时地将学生的探究方向指引到通过平行四边形的性质来反向探究平行四边形判别条件,进而得出平行四边形判别方法。

适时地选出一小组成员在台前利用教师学习机的“图形计算器”通过大屏幕演示小组成果…

得出平行四边形判别方法:两条对角线互相平分的四边形是平行四边形 或(一组对边平行且相等的四边形是平行四边形)。

活动板块4

通过小结后,借助大屏幕展示学习机的“图形计算器”中预先保存的练习题。

活动板块5

小结及学生谈感受、体会、特别是对学习机的使用情况谈体会和认识。

活动板块6

课后思考题: (将问题的探究记录在学习机的“图形计算器”中保存)

1.平行四边形abcd中,在对角线所在直线上取ae、cf,使ae=cf,连接be、df,

试说明:be=df。

2.利用学习机的“图形计算器”制作一组以平行四边形为基本图案的美丽图形。

t:提出复习概念和性质。

s:思考,回答结合一起

复习。

s:思考、作图、自主参与交流。

t:引导、合作,对小组活动及时评价。

t:注意s猜想、验证过程中出现哪些问题,他们想如何解决所遇到的问题。

t:引导发展s的探究意识和合作中团结解决所遇到的各种问题。

t:引导和补充。关注学生是否交流方法,互动学习。能否发现问题,研究并解决问题

s:互动学习,提出论证方法。

t:引导、合作,对回答问题及时评价。

s:通过对学具学习机的“图形计算器”的自主探求,获得平行四边形判别方法。

s:小组成员合作,其他学生观察、思考得出探究的正确方向。

s:互动学习,提出论证方法。

t:引导、合作,对回答问题及时评价。

t:关注学生是否交流方法,互动学习。能否发现问题,研究并解决问题

s:小组成员合作,其他学生观察、思考得出探究的正确方向。

t: 根据授课情况,板演解题过程,或学生口述解题过程。s:板演或口述。

t:演示引例,解决具体问题中感受应用的价值。

s:畅所欲言

t:进行补充,总结。

s:小组一名同学记录问题题干,另一名同学在学习机的“图形计算器”上记录下图形。课后将问题的探究记录在学习机的“图形计算器”中保存立足于旧知识的基础上,引导学生的注意力。

在情境引入中充分使用学习机“图形计算器”来促进学生学习过程。

为全体学生提供借助“图形计算器”为基础平台,使全体学生都有信心学习数学知识,调动学生积极性,主动地参与到课程过程中来,树立学习的信心。为教学目标1服务。

通过全体学生借助“图形计算器”,获得直观的平行四边形判别方法的印象,通过小组间的合作探究,更容易将所获得的信息结论加以认识、记忆。

学生在学习过程中,对学习机的“图形计算器”的自主发现时,大胆创新,想解决问题。教师起引导者作用,引入符号语言,使学生轻松愉悦地接受并获取经验为今后学习特殊四边形打基础。达成目标1。

直觉思维能力是数学注意培养发展的能力之一,它有利于人的探究能力的成长和创新精神培养。

提引问题时教师起组织者作用,使学生感受师生合作、生生合作的愉快,不断的对学具学习机的“图形计算器”的自主探求,获得数学发展,激发学生的学习热情,调动学生学习自主性。共同发展,达成目标1、2。

在学生最近的知识发展区建立新的生长点,解释应用与拓展的学习主题,在本活动中得以体现。达成教学目标2。

创设一个平等和谐的畅谈空间,调动学生的积极性,养成良好的总结习惯,善于从能

力,情感、态度等方面关注学生对课堂整体感受,发现集体的力量是无穷的,培养集体主义精神。提供一发展平台,给学生留有学习探索的空间。

展示提出问题,为下节课的学习提出预想。并利用“图形计算器”探求问题,带来直观体验,同时培养学生的观察能力,并提高学生的学习兴趣.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- haog.cn 版权所有 赣ICP备2024042798号-2

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务