2010年普通高等学校招生全国统一考试(上海卷) 数 学(文科) 考生注意: 1.答题前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码. 2.本试卷共有23道试题,满分150分,考试时间120分钟. 一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.已知集合A13,,m,B3,4,A2.不等式B1,2,3,4,则m . 2x0的解集为 . 4xππsin663.行列式ππsincos66cos的值为 . 4.若复数z12i(i为虚数单位),则zzz . 5.将一个总体分为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取 个个体. 6.已知四棱椎PABCD的底面是边长为6 的正方形,侧棱PA底面ABCD,且PA8,则该四棱椎的体积是 . 227.圆C:xy2x4y40的圆心到直线3x4y40的距离d . 0)的距离与它到直线x20的距离相等,则8.动点P到点F(2,点P的轨迹方程为 . 9.函数f(x)log的反函数的图像与y轴的交点坐标x3)3(是 . 10.从一副混合后的扑克牌(52张)中随机抽取2张,则“抽出的2张均为红桃”的概率为 (结果用最简分数表示). 11.2010年上海世博会园区每天9:00开园,20:00停止入园.在右边的框图中,S表示上海世博会官方网站在每个整点报道的入园总人数,a表示整点报道前1个小时内入园人数,则空白的执行框内应填入 . 开始 T9,S0 输出T,S T≤19 否 是 TT1 输入a 结束 n123n2n1234n1n1n12中,记位于第i行第j列的数12.在n行n列矩阵345n12n3n2n1为aij(i,j1,2,,n).当n9时,a11a22a33a99 . 13.在平面直角坐标系中,双曲线的中心在原点,它的一个焦点坐标为(5,e1(2,1)、0),任取双曲线上的点P,若OPae1be2e2(2,1)分别是两条渐近线的方向向量.(a、bR),则a、b满足的一个等式是 . 14.将直线l1:xy10、l2:nxyn0、l3:xnyn0(nN,n≥2)围成的三角形面积记为Sn,则limSn . n*二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生必须在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 2xy≤3,x2y≤3,15.满足线性约束条件的目标函数zxy的最大值是 x≥0,y≥03 (A)1 (B) (C)2 (D)3 2π16.“x2kπ(kZ)”是“tanx1”成立的 4 (A)充分不必要条件 (C)充要条件 (B)必要不充分条件 (D)既不充分也不必要条件 17.若x0是方程lgxx2的解,则x0属于区间 (A)(0,1) (B)(1,1.25) (C)(1.25,1.75) (D)(1.75,2) 18.若△ABC的三个内角满足sinA:sinB:sinC5:11:13,则△ABC (A)一定是锐角三角形 (B)一定是直角三角形 (C)一定是钝角三角形 (D)可能是锐角三角形,也可能是钝角三角形 三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分) 已知0xππ2x,化简:lg(cosxtanx12sin)lg[2cos(x)]lg(1sin2x). 242 20.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面). (1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米); (2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需要考虑骨架等因素). 21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知数列an的前n项和为Sn,且Snn5an85,nN. * (1)证明:an1是等比数列; (2)求数列Sn的通项公式,并求出使得Sn1Sn成立的最小正整数n. 22.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分. 若实数x、y、m满足xmym,则称x比y接近m. 2 (1)若x1比3接近0,求x的取值范围; (2)对任意两个不相等的正数a、b,证明:abab比ab接近2abab; (3)已知函数f(x)的定义域Dxxkπ,kZ,xR.任取xD,f(x) 等于1sinx和1sinx中接近0的那个值.写出函数f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明). 2233 23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. x2y2已知椭圆的方程为221(ab0),A(0,b),B(0,b)和Q(a,0)为的三ab个顶点. (1)若点M满足AM1(AQAB),求点M的坐标; 2 (2)设直线l1:yk1xp交椭圆于C、D两点,交直线l2:yk2x于点E.若b2k1k22,证明:E为CD的中点; a (3)设点P在椭圆内且不在x轴上,如何构作过PQ中点F的直线l,使得l与椭圆a10,b5,1).点P的坐标是(8,若的两个交点P1、P2满足PP1PP2PQ?令椭圆上的点P1、P2满足PP1、P2的坐标. 1PP2PQ,求点P 2010年普通高等学校招生全国统一考试(上海卷) 数学(文科)参考答案 一、填空题 1.2 2.(4,2) 3.1 4.62i 25.20 6.96 7.3 8.y28x 9.(0,2) 10.111 11.SSa 12.45 13.ab 14. 1742二、选择题 15.C 16.A 17.D 18. C 三、解答题 19.解:原式lg(sinxcosx)lg(sinxcosx)lg(1sin2x) ·································· 6分 (sinxcosx)2lg ······························································································· 8分 1sin2xlg1sin2x0. ······························································································· 12分 1sin2x20.解:(1)设圆柱的高为h,由题意可知,4(4r2h)9.6, 即2rh1.2. ···················································································································· 2分 S2πrhπr2 r3 ) πr(2.42(r0.4) 3π0r0.6. ·0.6,其中······························································ 5分 1∴当半径r0.4(米)时,Smax0.48π≈1.51(平方米). ·········································· 7分 (2)由r0.3及2rh1.2,得圆柱的高h0.6(米) ····································· 8分 主视图 左视图 0.6米 0.6米 0.6米 0.6米 0.6米 俯视图 ························· 14分 21.(1)证明:当n1时,a1S115a185, 解得a114,则a1115. 当n≥2时,Sn1(n1)5an185, ∴anSnSn115an5an1, ······················································································ 4分 5(an11), 65∴{an1····························································· 6分 }是首项为15,公比为的等比数列. ·6∴6an5an11,即an15(2)解:an1156n1, n1n155∴Snn511585n7590. ··························································· 9分 6655由Sn1Sn得n17590n7566nnn190, 15············································································ 12分 即151.解得nlog5≈14.85. ·1566∴使得Sn1Sn成立的最小正整数n15. ········································································· 14分 2222.(1)解:由题意得x13,即3x13,解得2x2. ∴x的取值范围是(2,2). ······························································································· 3分 (2)证明:当a、b是不相等的正数时, ············································································ 6分 a3b3(a2bab2)(ab)2(ab)0, ·223322又abab2abab,则ababab2abab0, 于是|a2bab22abab||a3b32abab|, ∴a2bab2比a3b3接近2abab. ························································································· 8分 (3)解:若|1sinx||1sinx|,即1sinx1sinx, 即sinx0,则2kπx2kππ(kZ) 同理,若|1sinx||1sinx|,则2kππx2kπ2π(kZ). 于是,函数f(x)的解析式是 2kπx2kππ(kZ),1sinx, ····························································· 11分 f(x)2kππx2kπ2π(kZ).1sinx,函数f(x)的大致图像如下: 5π 2π 3π 22 y 1 π πO 2π 2π 3π 22π 5π 2x 函数f(x)的最小正周期Tπ. ························································································ 12分 函数f(x)是偶函数.··········································································································· 13分 当xkππ(kZ)时,函数f(x)取得最小值0. ··················································· 14分 2函数f(x)在区间kπ,kππ(kZ)上单调递减; 2在区间kππ·························································· 16分 ,kππ(kZ)上单调递增. ·223.解:(1)设点M的坐标为(x0,y0),由题意可知, ∵AQ(a,b),AB(0,2b), ∴AM1a3bAQAB,(x0,y0b), 222∴点M的坐标为,a2b······························································································· 4分 . ·2yk1xp, (2)证明:由x2y2得(b2a2k12)x22a2k1pxa2p2a2b20, 221,baa2k1pb2p∴CD中点坐标为2. ···································································· 7分 ,22222bakbak11b2b2k22,∴k22. ∵k1·aak1 yk1xp,2ak1pb2p2由得l1与l2的交点E的坐标为2, ,2b2222bak1bak1ya2kx,1∴l1与l2的交点E为CD的中点. ······················································································· 10分 (3)解:设OF的斜率为k1,过F作斜率为k2v的直线交椭圆于P1、P2两点. 2k1a由(2)可知,F是PP12的中点,四边形PPQP12是平行四边形,所以PP1PP2PQ,直线PP··············································································································· 13分 12即为所求. ·1)得PQ中点为S1,由a10,b5及点P(8,11OSk,的斜率. OS221521过点S且斜率k2记l与的交点为PP2,的直线l的方程是y(x2).1、210kOS2则PP·········································································································· 15分 1PP2PQ. ·x2y21,100256,4)由解得P,P. ······················································ 18分 1(8,3)2(y1(x2),2